Skip to main content
Log in

High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hyaluronidases that break down hyaluronan are widely used for preparation of low molecular weight hyaluronan. Leech hyaluronidase (LHyal) is a newly discovered hyaluronidase with outstanding enzymatic properties. The Pichia pastoris expression system of LHyal that depends on AOX1 promoter (PAOX1) has been constructed. However, the addition of the toxic inducer methanol is a big safety concern. Here, a combinational strategy was adopted for constitutive expression of LHyal to high level in P. pastoris. By optimizing the combination of promoters PGAP, PGAP(m), and PTEF1 and signal peptides α-factor, nsB, and sp23, the enzyme activity of extracellular LHyal reached 1.38 × 105 U/mL in shake flasks. N-terminal engineering with neutral polar amino acids further increased LHyal activity to 2.06 × 105 U/mL. In addition, the impact of overexpressing transcription factors Aft1, Gal4-like, and Yap1 on LHyal production was also investigated. We found the co-expression of Aft1 significantly enhanced the expression of LHyal to 3.03 × 105 U/mL. Finally, LHyal activity of 2.12 × 106 U/mL was achieved in a 3-L fermenter, with a high productivity of 1.96 × 104 U/mL/h. The engineered LHyal-producing Pichia pastoris strains will be more attractive for production of hyaluronidase on industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn J, Hong J, Lee H, Park M, Lee E, Kim C, Choi E, Jung J, Lee H (2007) Translation elongation factor 1-alpha gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter. Appl Microbiol Biotechnol 74(3):601–608

    CAS  PubMed  Google Scholar 

  • Amorim FG, Boldrini-Franca J, de Castro Figueiredo Bordon K, Cardoso IA, De Pauw E, Quinton L, Kashima S, Arantes EC (2018) Heterologous expression of rTsHyal-1: the first recombinant hyaluronidase of scorpion venom produced in Pichia pastoris system. Appl Microbiol Biotechnol 102(7):3145–3158

    CAS  PubMed  Google Scholar 

  • Ata O, Prielhofer R, Gasser B, Mattanovich D, Calik P (2017) Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris. Biotechnol Bioeng 114(10):2319–2327

    CAS  PubMed  Google Scholar 

  • Aya KL, Stern R (2014) Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen 22(5):579–593

    PubMed  Google Scholar 

  • Baumgartner G, Gomar-Hoss C, Sakr L, Ulsperger E, Wogritsch C (1998) The impact of extracellular matrix on the chemoresistance of solid tumors-experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett 131(1):85–99

    CAS  PubMed  Google Scholar 

  • Ben Azoun S, Belhaj AE, Gongrich R, Gasser B, Kallel H (2016a) Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microb Biotechnol 9(3):355–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Azoun S, Belhaj AE, Kallel H (2016b) Rabies virus glycoprotein enhanced expression in Pichia pastoris using the constitutive GAP promoter. Biochem Eng J 113:77–85

    CAS  Google Scholar 

  • Bezakova Z, Hermannova M, Drimalova E, Malovikova A, Ebringerova A, Velebny V (2008) Effect of microwave irradiation on the molecular and structural properties of hyaluronan. Carbohydr Polym 73(4):640–646

    CAS  PubMed  Google Scholar 

  • Bookbinder LH, Hofer A, Haller MF, Zepeda ML, Keller GA, Lim JE, Edgington TS, Shepard HM, Patton JS, Frost GI (2006) A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release 114(2):230–241

    CAS  PubMed  Google Scholar 

  • Cambray G, Guimaraes JC, Arkin AP (2018) Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nat Biotechnol 36(10):1005–1015

    CAS  PubMed  Google Scholar 

  • Cao YH, Qiao JY, Li YH, Lu WQ (2007) De novo synthesis, constitutive expression of Aspergillus sulphureus beta-xylanase gene in Pichia pastoris and partial enzymic characterization. Appl Microbiol Biotechnol 76(3):579–585

    CAS  PubMed  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    CAS  PubMed  Google Scholar 

  • Chang CC, Hsieh MS, Liao ST, Chen YH, Cheng CW, Huang PT, Lin YF, Chen CH (2012) Hyaluronan regulates PPAR gamma and inflammatory responses in IL-1 beta-stimulated human chondrosarcoma cells, a model for osteoarthritis. Carbohydr Polym 90(2):1168–1175

    CAS  PubMed  Google Scholar 

  • Chen F, Kakizaki I, Yamaguchi M, Kojima K, Takagaki K, Endo M (2009) Novel products in hyaluronan digested by bovine testicular hyaluronidase. Glycoconj J 26(5):559–566

    CAS  PubMed  Google Scholar 

  • Chen KJ, Sabrina S, El-Safory NS, Lee GC, Lee CK (2016) Constitutive expression of recombinant human hyaluronidase PH20 by Pichia pastoris. J Biosci Bioeng 122(6):673–678

    CAS  PubMed  Google Scholar 

  • Delic M, Graf AB, Koellensperger G, Haberhauer-Troyer C, Hann S, Mattanovich D, Gasser B (2014) Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion. Microb Cell 1(11):376–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drimalova E, Velebny V, Sasinkova V, Hromadkova Z, Ebringerova A (2005) Degradation of hyaluronan by ultrasonication in comparison to microwave and conventional heating. Carbohydr Polym 61(4):420–426

    CAS  Google Scholar 

  • El-Safory NS, Fazary AE, Lee CK (2010) Hyaluronidases, a group of glycosidases: current and future perspectives. Carbohydr Polym 81(2):165–181

    CAS  Google Scholar 

  • Fronza M, Muhr C, da Silveira DS, Sorgi CA, Rodrigues SF, Farsky SH, Paula-Silva FW, Merfort I, Faccioli LH (2016) Hyaluronidase decreases neutrophils infiltration to the inflammatory site. Inflamm Res 65(7):533–542

    CAS  PubMed  Google Scholar 

  • Frost GI, Csoka AB, Wong T, Stern R (1997) Purification, cloning, and expression of human plasma hyaluronidase. Biochem Biophys Res Commun 236(1):10–15

    CAS  PubMed  Google Scholar 

  • Gu CJ, Zheng F, Long LK, Wang J, Ding SJ (2014) Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. PLoS One 9(4):e93912

    PubMed  PubMed Central  Google Scholar 

  • Guo XP, Shi YL, Sheng JZ, Wang FS (2014) A novel hyaluronidase produced by Bacillus sp A50. PLoS One 9(4):e94156

    PubMed  PubMed Central  Google Scholar 

  • Hofinger ESA, Spickenreither M, Oschmann J, Bernhardt G, Rudolph R, Buschauer A (2007) Recombinant human hyaluronidase Hyal-1: insect cells versus Escherichia coli as expression system and identification of low molecular weight inhibitors. Glycobiology 17(4):444–453

    CAS  PubMed  Google Scholar 

  • Holubova L, Korecka L, Podzimek S, Moravcova V, Rotkova J, Ehlova T, Velebny V, Bilkova Z (2014) Enhanced multiparametric hyaluronan degradation for production of molar-mass-defined fragments. Carbohydr Polym 112:271–276

    CAS  PubMed  Google Scholar 

  • Jedrzejas MJ, Mewbourne RB, Chantalat L, McPherson DT (1998) Expression and purification of Streptococcus pneumoniae hyaluronate lyase from Escherichia coli. Protein Expr Purif 13(1):83–89

    CAS  PubMed  Google Scholar 

  • Jie HF, Xu YH, Li C, Li J (2016) Overexpressing target helper genes enhances secretion and glycosylation of recombinant proteins in Pichia pastoris under simulated microgravity. J Ind Microbiol Biotechnol 43(10):1429–1439

    CAS  Google Scholar 

  • Jin P, Kang Z, Zhang N, Du G, Chen J (2014) High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep 4:4471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakizaki I, Ibori N, Kojima K, Yamaguchi M, Endo M (2010) Mechanism for the hydrolysis of hyaluronan oligosaccharides by bovine testicular hyaluronidase. FEBS J 277(7):1776–1786

    CAS  PubMed  Google Scholar 

  • Kang Z, Zhang N, Zhang Y (2016) Enhanced production of leech hyaluronidase by optimizing secretion and cultivation in Pichia pastoris. Appl Microbiol Biotechnol 100(2):707–717

    CAS  PubMed  Google Scholar 

  • Kang Z, Huang H, Zhang YF, Du GC, Chen J (2017) Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. World J Microbiol Biotechnol 33(1):19

    PubMed  Google Scholar 

  • Kang Z, Zhou ZX, Wang Y, Huang H, Du GC, Chen J (2018) Bio-based strategies for producing glycosaminoglycans and their oligosaccharides. Trends Biotechnol 36(8):806–818

    CAS  PubMed  Google Scholar 

  • Khan N, Niazi ZR, Rehman FU, Akhtar A, Khan MM, Khan S, Baloch N, Khan S (2018) Hyaluronidases: a therapeutic enzyme. Protein Pept Lett 25(7):663–676

    CAS  PubMed  Google Scholar 

  • Kim SK, Min WK, Park YC, Seo JH (2015a) Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II. Enzyme Microb Tech 79-80:49–54

    CAS  Google Scholar 

  • Kim SK, Park YC, Lee HH, Jeon ST, Min WK, Seo JH (2015b) Simple amino acid tags improve both expression and secretion of Candida antarctica lipase B in recombinant Escherichia coli. Biotechnol Bioeng 112(2):346–355

    CAS  PubMed  Google Scholar 

  • Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J (2017) Engineering the N-terminal end of CelA results in improved performance and growth of Caldicellulosiruptor bescii on crystalline cellulose. Biotechnol Bioeng 114(5):945–950

    CAS  PubMed  Google Scholar 

  • Kogan G, Soltes L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29(1):17–25

    CAS  PubMed  Google Scholar 

  • Liao X, Zhao J, Liang S, Jin J, Li C, Xiao R, Li L, Guo M, Zhang G, Lin Y (2019) Enhancing co-translational folding of heterologous protein by deleting non-essential ribosomal proteins in Pichia pastoris. Biotechnol Biofuels 12:38

    PubMed  PubMed Central  Google Scholar 

  • Lin B, Hollingshead SK, Coligan JE, Egan ML, Baker JR, Pritchard DG (1994) Cloning and expression of the gene for group B streptococcal hyaluronate lyase. J Biol Chem 269(48):30113–30116

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Massahi A, Calik P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188

    CAS  PubMed  Google Scholar 

  • Melander C, Tommeraas K (2010) Heterogeneous hydrolysis of hyaluronic acid in ethanolic HCl slurry. Carbohydr Polym 82(3):874–879

    CAS  Google Scholar 

  • Messina L, Gavira JA, Pernagallo S, Unciti-Broceta JD, Sanchez Martin RM, Diaz-Mochon JJ, Vaccaro S, Conejero-Muriel M, Pineda-Molina E, Caruso S, Musumeci L, Di Pasquale R, Pontillo A, Sincinelli F, Pavan M, Secchieri C (2016) Identification and characterization of a bacterial hyaluronidase and its production in recombinant form. FEBS Lett 590(14):2180–2189

    CAS  PubMed  Google Scholar 

  • Obst U, Lu TK, Sieber V (2017) A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth Biol 6(6):1016–1025

    CAS  PubMed  Google Scholar 

  • Qin XL, Qian JC, Yao GF, Zhuang YP, Zhang SL, Chu J (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77(11):3600–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reitinger S, Boroviak T, Laschober GT, Fehrer C, Mullegger J, Lindner H, Lepperdinger G (2008) High-yield recombinant expression of the extremophile enzyme, bee hyaluronidase in Pichia pastoris. Protein Expr Purif 57(2):226–233

    CAS  PubMed  Google Scholar 

  • Ruth C, Buchetics M, Vidimce V, Kotz D, Naschberger S, Mattanovich D, Pichler H, Gasser B (2014) Pichia pastoris Aft1-a novel transcription factor, enhancing recombinant protein secretion. Microb Cell Factories 13:120

    Google Scholar 

  • Sauer C, Ver Loren van Themaat E, LGM B, Groothuis D, Cruz R, Hamoen LW, Harwood CR, van Rij T (2018) Exploring the nonconserved sequence space of synthetic expression modules in Bacillus subtilis. ACS Synth Biol 7(7):1773–1784

    CAS  PubMed  Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8):699–715

    CAS  PubMed  Google Scholar 

  • Stern R, Kogan G, Jedrzejas MJ, Soltes L (2007) The many ways to cleave hyaluronan. Biotechnol Adv 25(6):537–557

    CAS  PubMed  Google Scholar 

  • Toole BP, Ghatak S, Misra S (2008) Hyaluronan oligosaccharides as a potential anticancer therapeutic. Curr Pharm Biotechnol 9(4):249–252

    CAS  PubMed  Google Scholar 

  • Vadhana AK, Samuel P, Berin RM, Krishna J, Kamatchi K, Meenakshisundaram S (2013) Improved secretion of Candida antarctica lipase B with its native signal peptide in Pichia pastoris. Enzym Microb Technol 52(3):177–183

    CAS  Google Scholar 

  • Wang W, Wang J, Li F (2017) Hyaluronidase and chondroitinase. Adv Exp Med Biol 925:75–87

    CAS  PubMed  Google Scholar 

  • Wang H, Zhang X, Qiu J, Wang KK, Meng K, Luo HY, Su XY, Ma R, Huang HQ, Yao B (2019a) Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system. J Ind Microbiol Biotechnol 46(1):113–123

    CAS  PubMed  Google Scholar 

  • Wang X, Chen Y, Nie Y, Xu Y (2019b) Improvement of extracellular secretion efficiency of Bacillus naganoensis pullulanase from recombinant Escherichia coli: peptide fusion and cell wall modification. Protein Expr Purif 155:72–77

    CAS  PubMed  Google Scholar 

  • Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186(1):37–44

    CAS  PubMed  Google Scholar 

  • Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36(1):182–195

    CAS  PubMed  Google Scholar 

  • Zhang YF, Ling ZM, Du GC, Chen J, Kang Z (2016) Improved production of active Streptomyces griseus trypsin with a novel auto-catalyzed strategy. Sci Rep 6:23158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YF, Huang H, Yao XH, Du GC, Chen J, Kang Z (2018) High-yield secretory production of stable, active trypsin through engineering of the N-terminal peptide and self-degradation sites in Pichia pastoris. Bioresour Technol 247:81–87

    CAS  PubMed  Google Scholar 

  • Zhou X, Han Y, Lv Z, Tian X, Li H, Xie P, Zheng L (2017) Simultaneously achieve soluble expression and biomimetic immobilization of Candida antarctica lipase B by introducing polyamine tags. J Biotechnol 249:1–9

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by a grant from the Key Technologies R&D Program of Jiangsu Province (BE2019630), the National Natural Science Foundation of China (31670092), the Fundamental Research Funds for the Central Universities (JUSRP51707A), and the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Chen or Zhen Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(PDF 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Liang, Q., Wang, Y. et al. High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris. Appl Microbiol Biotechnol 104, 1621–1632 (2020). https://doi.org/10.1007/s00253-019-10282-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10282-7

Keywords

Navigation