Skip to main content

Advertisement

Log in

Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gut microbiota modulation by a probiotic is a novel therapy for hypercholesterolemia mitigation. This study initially investigated the potential hypocholesterolemic effect of Bacillus sp. DU-106 in hypercholesterolemic rats and explored its potential relation with gut microbiota. Sprague–Dawley rats received a high-fat diet, or a high-fat diet supplemented with 7.5 × 109 and 1.5 × 1010 CFU/kg bw/day Bacillus sp. DU-106 (low-dose and high-dose groups). At the end of 9 weeks, Bacillus sp. DU-106 treatment significantly decreased the body weight, liver index, and total cholesterol. 16S rRNA sequencing showed that Bacillus sp. DU-106 intervention significantly increased bacterial richness and particularly increased the genus abundance of Turicibacter, Acinetobacter, Brevundimonas, and Bacillus and significantly decreased the abundance of Ralstonia. Metabolomic data further indicated that the supplementation of Bacillus sp. DU-106 remarkably changed the gut metabolic profiles of hypercholesterolemic rats and, in particular, elevated the metabolites of indole-3-acetate, methylsuccinic acid, creatine, glutamic acid, threonine, lysine, ascorbic acid, and pyridoxamine. Spearman’s correlation analysis showed the close relation between the different genera and metabolites. In conclusion, Bacillus sp. DU-106 supplement ameliorated high-fat diet-induced hypercholesterolemia and showed potential probiotic benefits for the intestine.

Key points

• A novel potential probiotic Bacillus sp. DU-106 ameliorated hypercholesterolemia in rats.

• Bacillus sp. DU-106 supplement regulated gut microbiome structure and richness.

• Bacillus sp. DU-106 supplement changed metabolic profiles in high-fat diet rats.

• Significant correlations were observed between differential genera and metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aderiye B, David O (2013) In vivo evaluation of hypolipidemic potentials of Bacillus species isolated from fermented locust bean (Parkia fillicoides Welw) seeds (Iru). Microbiol Res J Int 3:574–584. https://doi.org/10.9734/BMRJ/2013/5026

    Article  Google Scholar 

  • Alkanany FN, Gmais SA, Maki AA, Altaee AM (2017) Estimation of bacterial biodegradability of PAH in Khor Al-Zubair Channel, southern Iraq. Int J Mar Sci 7:42

    Google Scholar 

  • Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, Lepage P, Klopp C, Mariette J, Bouchez O (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54(12):3055–3061

    CAS  PubMed  Google Scholar 

  • Aminlari L, Shekarforoush SS, Hosseinzadeh S, Nazifi S, Sajedianfard J, Eskandari MH (2018) Effect of probiotics Bacillus coagulans and Lactobacillus plantarum on lipid profile and feces bacteria of rats fed cholesterol-enriched diet. Probiotics Antimicrob Proteins 11:1163–1171

    Google Scholar 

  • Bassols J, Serino M, Carreras-Badosa G, Burcelin R, Blasco-Baque V, Lopez-Bermejo A, Fernandez-Real JM (2016) Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatr Res 80(6):777–784

    CAS  PubMed  Google Scholar 

  • Blachier F, Claire B, Cécile B, Daniel T (2009) Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90(3):814S–821S. https://doi.org/10.3945/ajcn.2009.27462S

    Article  CAS  PubMed  Google Scholar 

  • Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani P, Bäckhed F (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22(4):658–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Yang Z, Xia C, Huang Y, Yin B, Guo F, Zhao H, Zhao T, Qu H, Huang J (2014) The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complement Altern Med 14(1):386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choo JM, Trim PJ, Leong LEX, Abell GCJ, Brune C, Jeffries N, Wesselingh S, Dear TN, Snel MF, Rogers GB (2017) Inbred mouse populations exhibit intergenerational changes in intestinal microbiota composition and function following introduction to a facility. Front Microbiol 8(26191):608

    PubMed  PubMed Central  Google Scholar 

  • Collins KH, Paul HA, Hart DA, Reimer RA, Smith IC, Rios JL, Seerattan RA, Herzog W (2016) A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep 6:37278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini L, Molinari R, Farinon B, Merendino N (2017) Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 18(12):2645

    PubMed Central  Google Scholar 

  • Coursin DB (1961) Present status of vitamin B6 metabolism. Am J Clin Nutr 9(3):304–314

    CAS  PubMed  Google Scholar 

  • Cui Y, Blumenthal RS, Flaws JA, Whiteman MK, Langenberg P, Bachorik PS, Bush TL (2001) Non–high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med 161(11):1413–1419

    CAS  PubMed  Google Scholar 

  • da Silva RP, Leonard K-A, Jacobs RL (2017) Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet. J Nutr Biochem 50:46–53

    PubMed  Google Scholar 

  • Dambekodi P, Gilliland S (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J Dairy Sci 81(7):1818–1824

    CAS  PubMed  Google Scholar 

  • Dionysia K, Laura LF, Kelly S, Gannon MC, Nuttall FQ (2009) Lysine ingestion markedly attenuates the glucose response to ingested glucose without a change in insulin response. Am J Clin Nutr 90(2):314–320

    Google Scholar 

  • Elshaghabee FMF, Namita R, Chetan S, Harsh P (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490

    PubMed  PubMed Central  Google Scholar 

  • Farnier M, Davignon J (1998) Current and future treatment of hyperlipidemia: the role of statins. Am J Cardiol 82(4B):3J–10J

    CAS  PubMed  Google Scholar 

  • Farwell WR, Sesso HD, Buring JE, Gaziano JM (2005) Non–high-density lipoprotein cholesterol versus low-density lipoprotein cholesterol as a risk factor for a first nonfatal myocardial infarction. Am J Cardiol 96(8):1129–1134

    CAS  PubMed  Google Scholar 

  • Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, Brandsma E, Marczynska J, Imhann F, Weersma RK (2015) The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 117(9):817–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grundy SM, Ahrens EH Jr, Salen G, Schreibman PH, Nestel PJ (1972) Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J Lipid Res 13(4):531–551

    CAS  PubMed  Google Scholar 

  • Holme I, Aastveit A, Jungner I, Walldius G (2008) Relationships between lipoprotein components and risk of myocardial infarction: age, gender and short versus longer follow-up periods in the Apolipoprotein MOrtality RISk study (AMORIS). J Intern Med 264(1):30–38

    CAS  PubMed  Google Scholar 

  • Hou Y, Shao W, Xiao R, Xu K, Ma Z, Johnstone BH, Du Y (2009) Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model. Exp Gerontol 44(6–7):434–439

    PubMed  Google Scholar 

  • Islam J, Sato S, Watanabe K, Watanabe T, Hirahara K, Aoyama Y, Tomita S, Aso H, Komai M, Shirakawa H (2017) Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice. J Nutr Biochem 42:43–50

    CAS  PubMed  Google Scholar 

  • Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, McKenney JM, Grundy SM, Gill EA, Wild RA (2015) National lipid association recommendations for patient-centered management of dyslipidemia: part 1—full report. J Clin Lipidol 9(2):129–169

    PubMed  Google Scholar 

  • Jiao N, Baker SS, Nugent CA, Tsompana M, Cai L, Wang Y, Buck MJ, Genco RJ, Baker RD, Zhu R (2018) Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics 50:224–254

    Google Scholar 

  • Johnson AM, Costanzo A, Gareau MG, Armando AM, Quehenberger O, Jameson JM, Olefsky JM (2015) High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One 10(4):e0122195

    PubMed  PubMed Central  Google Scholar 

  • Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D (2017) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26(4):660–671.e3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazak L, Rahbani JF, Samborska B, Lu GZ, Jedrychowski MP, Lajoie M, Zhang S, Ramsay L, Dou FY, Tenen D, Chouchani ET, Dzeja P, Watson IR, Tsai L, Rosen ED, Spiegelman BM (2019) Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat Metab 1(3):360–370. https://doi.org/10.1038/s42255-019-0035-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koistinen VM, Kärkkäinen O, Borewicz K, Zarei I, Jokkala J, Micard V, Rosa-Sibakov N, Auriola S, Aura A-M, Smidt H, Hanhineva K (2019) Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome 7(1):103. https://doi.org/10.1186/s40168-019-0718-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-Pompan M, Avnit-Sagi T, Kosower N, Malka G, Rein M (2017) Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 25(6):1243–1253

    CAS  PubMed  Google Scholar 

  • Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, Yarmush ML, Alaniz RC, Jayaraman A, Lee K (2018) Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 23(4):1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:902917

    PubMed  PubMed Central  Google Scholar 

  • Li M, Shu X, Xu H, Zhang C, Yang L, Zhang L, Ji G (2016) Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med 14(1):237

    PubMed  PubMed Central  Google Scholar 

  • Li P, Tian W, Jiang Z, Liang Z, Wu X, Du B (2018) Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02216

  • Li X, Cao Z, Yang Y, Chen L, Liu J, Lin Q, Qiao Y, Zhao Z, An Q, Zhang C (2019) Correlation between jejunal microbial diversity and muscle fatty acids deposition in broilers reared at different ambient temperatures. Sci Rep 9(1):1–12

    Google Scholar 

  • Lin IC, Yamashita S, Murata M, Kumazoe M, Tachibana H (2016) Equol suppresses inflammatory response and bone erosion due to rheumatoid arthritis in mice. J Nutr Biochem 32:101–106

    CAS  PubMed  Google Scholar 

  • Liong M, Shah N (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of Lactobacilli strains. Int Dairy J 15(4):391–398

    CAS  Google Scholar 

  • Liu J, Sempos CT, Donahue RP, Dorn J, Trevisan M, Grundy SM (2006) Non–high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol 98(10):1363–1368

    CAS  PubMed  Google Scholar 

  • Liu Z, Jeppesen PB, Gregersen S, Chen X, Hermansen K (2007) Dose- and glucose-dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal INS-1E beta-cells. Rev Diabet Stud 5(4):232

    Google Scholar 

  • Liu W, Crott JW, Lyu L, Pfalzer AC, Li J, Choi S-W, Yang Y, Mason JB, Liu Z (2016) Diet-and genetically-induced obesity produces alterations in the microbiome, inflammation and Wnt pathway in the intestine of Apc+/1638N mice: comparisons and contrasts. J Cancer 7(13):1780–1790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Chen X, Hu X, Niu H, Tian R, Wang H, Pang H, Jiang L, Qiu B, Chen X, Zhang Y, Ma Y, Tang S, Li H, Feng S, Zhang S, Zhang C (2019) Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7(1):68. https://doi.org/10.1186/s40168-019-0683-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Liua M, Mab L, Chena Q, Zhanga P, Chena C (2018) Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice. J Funct Foods 48:220–227

    Google Scholar 

  • Mantziari A, Aakko J, Kumar H (2016) The impact of storage conditions on the stability of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis Bb12 in human milk. Breastfeed Med 12(9):566

    Google Scholar 

  • Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339

    PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):14806

    Google Scholar 

  • Martín-Calvo N, Martínez-González MÁ (2017) Vitamin C intake is inversely associated with cardiovascular mortality in a cohort of Spanish graduates: the SUN project. Nutrients 9(9):954

    PubMed Central  Google Scholar 

  • Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, Moriyama EN, Walter J (2009) Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75(12):4175–4184

    PubMed  PubMed Central  Google Scholar 

  • Neis EPJG, Dejong CHC, Rensen SS (2015) The role of microbial amino acid metabolism in host metabolism. Nutrients 7(4):2930–2946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Q, Chen H, Hu J, Gao H, Fan L, Long Z, Nie S (2018) Arabinoxylan attenuates type 2 diabetes by improvement of carbohydrate, lipid, and amino acid metabolism. Mol Nutr Food Res 62:1800222. https://doi.org/10.1002/mnfr.201800222

    Article  CAS  Google Scholar 

  • Ottosson F, Brunkwall L, Ericson U, Nilsson PM, Almgren P, Fernandez C, Melander O, Orho-Melander M (2018) Connection between BMI related plasma metabolite profile and gut microbiota. J Clin Endocrinol Metab 103(4):1491–1501

    PubMed  Google Scholar 

  • Ouwehand AC (2017) A review of dose-responses of probiotics in human studies. Benefic Microbes 8(2):143–151

    CAS  Google Scholar 

  • Panel ED, Grundy SM (2013) An international atherosclerosis society position paper: global recommendations for the management of dyslipidemia. J Clin Lipidol 7(6):561–565

    Google Scholar 

  • Qiu L, Tao X, Xiong H, Yu J, Wei H (2018) Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct 9(8):4299–4309

  • Raquel FS, Elizabeth HN, Beatriz TI, Aline L, Leadir LMF, Angelica OB, Marina VC (2019) Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Res Int 115:90–94. https://doi.org/10.1016/j.foodres.2018.07.044

    Article  CAS  Google Scholar 

  • Rebolledo C, Cuevas A, Zambrano T, Acuña JJ, Jorquera MA, Saavedra K, Martínez C, Lanas F, Serón P, Salazar LA (2017) Bacterial community profile of the gut microbiota differs between hypercholesterolemic subjects and controls. Biomed Res Int 2017:8127814–8127816. https://doi.org/10.1155/2017/8127814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JG, Wang S, Smith BJ, Jacobson TA (2009) Meta-analysis of the relationship between non–high-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol 53(4):316–322

    CAS  PubMed  Google Scholar 

  • Ryan MP, Adley CC (2014) Ralstonia spp.: emerging global opportunistic pathogens. Eur J Clin Microbiol Infect Dis 33(3):291–304

    CAS  PubMed  Google Scholar 

  • Saffarian A, Touchon M, Mulet C, Tournebize R, Passet V, Brisse S, Rocha EP, Sansonetti PJ, Pédron T (2017) Comparative genomic analysis of Acinetobacter strains isolated from murine colonic crypts. BMC Genomics 18(1):525

    PubMed  PubMed Central  Google Scholar 

  • Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf 2(3):101–110

    PubMed  Google Scholar 

  • Schwartz RG, Barrett EJ, Francis CK, Jacob R, Zaret BL (1985) Regulation of myocardial amino acid balance in the conscious dog. J Clin Invest 75(4):1204–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedan A, Alshawsh MA, Alshagga MA, Koosha S, Mohamed Z (2015) Medicinal plants and their inhibitory activities against pancreatic lipase: a review. J Evidence-Based Complementary Altern Med 2015:973143–973113. https://doi.org/10.1155/2015/973143

    Article  Google Scholar 

  • Sheng H, Rabinowitz JD (2018) An unexpected trigger for calorie burning in brown fat. Nature 560(7716):38-39

  • Shih K-C, Kwok C-F, Hwu C-M, Hsiao L-C, Li S-H, Liu Y-F, Ho L-T (1997) Acipimox attenuates hypertriglyceridemia in dyslipidemic noninsulin dependent diabetes mellitus patients without perturbation of insulin sensitivity and glycemic control. Diabetes Res Clin Pract 36(2):113–119

    CAS  PubMed  Google Scholar 

  • Shimizu M, Hashiguchi M, Shiga T, Tamura H-o, Mochizuki M (2015) Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One 10(10):e0139795

    PubMed  PubMed Central  Google Scholar 

  • Taranto M, Fernandez Murga M, Lorca G, de Valdez GF (2003) Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J Appl Microbiol 95(1):86–91

    CAS  PubMed  Google Scholar 

  • Udayappan SD, Kovatcheva-Datchary P, Bakker GJ, Havik SR, Herrema H, Cani PD, Bouter KE, Belzer C, Witjes JJ, Vrieze A (2017) Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS One 12(11):e0181693

    PubMed  PubMed Central  Google Scholar 

  • Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Borén J, Orešič M (2010) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51(5):1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walzer G, Rosenberg E, Ron EZ (2006) The Acinetobacter outer membrane protein a (OmpA) is a secreted emulsifier. Environ Microbiol 8(6):1026–1032

    CAS  PubMed  Google Scholar 

  • Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, Vlieg JE-H, Strissel K, Zhao L, Obin M (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9(1):1–15

    PubMed  Google Scholar 

  • Wang M, Chen Y, Wang Y, Li Y, Zhang X, Zheng H, Ma F, Ma C, Lu B, Xie Z (2018) Beneficial changes of gut microbiota and metabolism in weaned rats with Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 supplementation. J Funct Foods 48:252–265

    CAS  Google Scholar 

  • Wilson R, Willis J, Gearry R, Skidmore P, Fleming E, Frampton C, Carr A (2017) Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: associations with glycaemic control, obesity, and smoking. Nutrients 9(9):997

    PubMed Central  Google Scholar 

  • Wlodarska M, Luo C, Kolde R, D'Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA (2017) Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 22(1):25–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie N, Cui Y, Yin YN, Zhao X, Yang JW, Wang ZG, Fu N, Tang Y, Wang XH, Liu XW (2011) Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med 11(1):53–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 4(2):232–241

    CAS  PubMed  Google Scholar 

  • Zhao L, Zhang Q, Ma W, Tian F, Shen H, Zhou M (2017) A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct 8:4644–4656

    CAS  PubMed  Google Scholar 

  • Zhong C-Y, Sun W-W, Ma Y, Zhu H, Yang P, Wei H, Zeng B-H, Zhang Q, Liu Y, Li W-X (2015) Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Sci Rep 5:10512

    PubMed  PubMed Central  Google Scholar 

  • Zhongyong G, Shouqun J, Chuntian Z, Zhimei T, Xiajing L (2015) Equol inhibits LPS-induced oxidative stress and enhances the immune response in chicken HD11 macrophages. Cell Physiol Biochem 36(2):611–621

    Google Scholar 

  • Zouari R, Hamden K, El Feki A, Chaabouni K, Makni-Ayadi F, Kallel C, Sallemi F, Ellouze-Chaabouni S, Ghribi-Aydi D (2016) Protective and curative effects of Bacillus subtilis SPB1 biosurfactant on high-fat-high-fructose diet induced hyperlipidemia, hypertriglyceridemia and deterioration of liver function in rats. Biomed Pharmacother 84:323–329

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Key Realm R&D Program of Guangdong Province and Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams for financial support. We thank Novogene (Beijing, China) for the use of Illumina platform.

Funding

This work was supported by Key Realm R&D Program of Guangdong Province (grant number: 2018B020206001) and Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (grant number: 2019KJ125).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: JH, NX, PL, and BD. Conducted the experiments: JH, NX, YS, SW, WT, and YL. Analysis and interpretation of data: JH, NX, YS, PL, and BD. Writing—original draft preparation: JH, NX, YS, and SW. Writing—review and editing: JH, NX, YS, SW, WT, YL, PL, and BD. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Pan Li or Bing Du.

Ethics declarations

Ethics approval

All animal experiments were performed in compliance with the Chinese legislation on the use and care of laboratory animals and were carried out in Guangzhou Quality Supervision and Testing Institute (Approval No.: SYXK (Yue) 2014-0137). All animal experiments comply with the ARRIVE guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Xiao, N., Sun, Y. et al. Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats. Appl Microbiol Biotechnol 105, 287–299 (2021). https://doi.org/10.1007/s00253-020-10977-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10977-2

Keywords

Navigation