Skip to main content

Advertisement

Log in

Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of degrading fipronil have been isolated and identified, including Streptomyces rochei, Paracoccus sp., Bacillus firmus, Bacillus thuringiensis, Bacillus spp., Stenotrophomonas acidaminiphila, and Aspergillus glaucus. The metabolic reactions of fipronil degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation pathways and identifying the main knowledge gaps that currently exist in order to inform future research.

Key points

• Biodegradation is a powerful tool for the removal of fipronil.

• Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil.

• Possible biochemical pathways of fipronil in the environment are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aajoud A, Ravanel P, Tissut M (2003) Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J Agric Food Chem 51:1347–1352

    Article  CAS  PubMed  Google Scholar 

  • Abraham J, Gajendiran A (2019) Biodegradation of fipronil and its metabolite fipronil sulfone by Streptomyces rochei strain AJAG7 and its use in bioremediation of contaminated soil. Pestic Biochem Phys 155:90–100

    Article  CAS  Google Scholar 

  • Ahmad J, Naeem S, Ahmad M, Usman ARA, Al-Wabel MI (2019) A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. J Environ Manage 246:214–228

    Article  CAS  PubMed  Google Scholar 

  • Al-Badran AA, Fujiwara M, Mora MA (2019) Effects of insecticides, fipronil and imidacloprid, on the growth, survival, and behavior of brown shrimp Farfantepenaeus aztecus. PLoS ONE 14:e223641

    Article  CAS  Google Scholar 

  • Anagnostopoulos C, Ampadogiannis G, Bempelou E, Liapis K, Kastellanou E (2020) The 2017 fipronil egg contamination incident: the case of Greece. J Food Saf 40(1)

  • Anandan S, Wu JJ (2015) Effective degradation of fipronil using combined catalytic ozonation processes. Ozone Sci Eng 37:186–190

    Article  CAS  Google Scholar 

  • Arora PK, Srivastava A, Garg SK, Singh VP (2018) Recent advances in degradation of chloronitrophenols. Bioresour Technol 250:902–909

    Article  CAS  PubMed  Google Scholar 

  • At K, Karthikeyan S, Thanga SGV (2019) Occurrence and microbial degradation of fipronil residues in tropical highland rhizosphere soils of Kerala. India Soil Sediment Contam 28:360–379

    Article  CAS  Google Scholar 

  • Bhatt P, Rene ER, Kumar AJ, Zhang WP, Chen S (2020) Binding interaction of allethrin with esterase: bioremediation potential and mechanism. Bioresour Technol 315:123845

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Rene ER, Kumar AJ, Gangola S, Kumar G, Sharma A, Chen S (2021a) Fipronil degradation kinetics and resource recovery potential of Bacillus sp. strain FA4 isolated from a contaminated agricultural field in Uttarakhand, India. Chemosphere 276:130156

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Sharma A, Rene ER, Kumar AJ, Zhang W, Chen S (2021b) Bioremediation of fipronil using Bacillus sp. FA3: mechanism, kinetics and resource recovery potential from contaminated environments. J Water Process Eng 39:101712

    Article  Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021c) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41:32

    Article  Google Scholar 

  • Bhatt P, Zhou X, Huang Y, Zhang W, Chen S (2021d) Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J Hazard Mater 411: 125026

  • Birolli WG, Lima RN, Porto ALM (2019) Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Front Microbiol 10:1453

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobe A, Meallier P, Cooper JF, Coste CM (1998) Kinetics and mechanisms of abiotic degradation of fipronil (hydrolysis and photolysis). J Agric Food Chem 46:2834–2839

    Article  CAS  Google Scholar 

  • Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2014) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67

    Article  CAS  Google Scholar 

  • Caboni P, Sammelson RE, Casida JE (2003) Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: ethiprole compared with fipronil. J Agric Food Chem 51:7055–7061

    Article  CAS  PubMed  Google Scholar 

  • Cappelini LTD, Alberice JV, Eugenio PFM, Pozzi E, Urbaczek AC, Diniz LGR, Carrilho ENVM, Carrilho E, Vieira EM (2018) Burkholderia thailandensis: the main bacteria biodegrading fipronil in fertilized soil with assessment by a QuEChERS/GC-MS method. J Brazil Chem Soc 29:1934–1943

    CAS  Google Scholar 

  • Carrao DB, Habenchus MD, Perez De Albuquerque NC, Da Silva RM, Lopes NP, Moraes De Oliveira AR (2019) In vitro inhibition of human CYP2D6 by the chiral pesticide fipronil and its metabolite fipronil sulfone: prediction of pesticide-drug interactions. Toxicol Lett 313:196–204

    Article  CAS  PubMed  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol, Vol 58, ed. M.R. Berenbaum, 99–117

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  PubMed  Google Scholar 

  • Chen FR, Xie GX, Yu HY, Peng D, Yu M, Huang HL, Zeng GM (2008) Development of lignin-biodegrading inoculant for composting. J Ecol Rural Environ 24:84–87

    CAS  Google Scholar 

  • Chen S, Chang C, Deng Y, An S, Dong YH, Zhou J, Hu M (2014) Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. J Agric Food Chem 62:2147–2157

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Hu Q, Hu M, Luo J, Weng Q, Lai K (2011) Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresour Technol 102: 8110–8116

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Lu Y, Zhao Z, Hoogenboom RLAP, Zhang Q, Liu X (2020) Assessing the combined toxicity effects of three neonicotinoid pesticide mixtures on human neuroblastoma SK-N-SH and lepidopteran Sf-9 cells. Food Chem Toxicol 145:111631

    Article  CAS  Google Scholar 

  • Chigure GM, Sharma AK, Kumar S, Fular A, Sagar SV, Nagar G (2018) Role of metabolic enzymes in conferring resistance to synthetic pyrethroids, organophosphates, and phenylpyrazole compounds in Rhipicephalus microplus. Int J Acarol 44:28–34

    Article  Google Scholar 

  • Cryder Z, Wolf D, Carlan C, Gan J (2021) Removal of urban-use insecticides in a large-scale constructed wetland. Environ Pollut 268:115586

    Article  CAS  PubMed  Google Scholar 

  • Cycoń M, Mrozik A, Piotrowska-Seget Z (2017) Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere 172:52–71

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Huang Y, Zhan H, Bhatt P, Chen S (2020) An overview of strobilurin fungicide degradation: current status and future perspective. Front Microbiol 11:389

  • Fenet H, Beltran E, Gadji B, Cooper JF, Coste CM (2001) Fate of a phenylpyrazole in vegetation and soil under tropical field conditions. J Agric Food Chem 49:1293–1297

    Article  CAS  PubMed  Google Scholar 

  • Gajendiran A, Abraham J (2017) Biomineralisation of fipronil and its major metabolite, fipronil sulfone, by Aspergillus glaucus strain AJAG1 with enzymes studies and bioformulation. 3 Biotech 7:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao C, Chen Y, Dong Y, Su J (2014) Mechanism of fipronil resistance in Laodelphax striatellus (Hemiptera: Delphacidae). J Entomol Sci 49:1–10

    Article  Google Scholar 

  • Ghaffar A, Hussain R, Abbas G, Kalim M, Khan A, Ferrando S (2018) Fipronil (Phenylpyrazole) induces hemato-biochemical, histological and genetic damage at low doses in common carp, Cyprinus carpio (Linnaeus, 1758). Ecotoxicology 27:1261–1271

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Azhahianambi P, Yadav MP (2007) Upcoming and future strategies of tick control: a review. J Vector Dis 44:79–89

    CAS  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2016) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife (2015). Environ Sci Pollut Res 23:947–947

    Article  Google Scholar 

  • Goff AD, Saranjampour P, Ryana LM, Hladik ML, Covi JA, Armbrust KL (2017) The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities. Aquat Toxicol 186:96–104

    Article  CAS  PubMed  Google Scholar 

  • Gomes Junior O, Borges Neto W, Machado AEH, Daniel D, Trovo AG (2017) Optimization of fipronil degradation by heterogeneous photocatalysis: Identification of transformation products and toxicity assessment. Water Res 110:133–140

    Article  CAS  PubMed  Google Scholar 

  • Gondhalekar AD, Scharf ME (2012) Mechanisms underlying fipronil resistance in a multiresistant field strain of the German Cockroach (Blattodea: Blattellidae). J Med Entomol 49:122–131

    Article  CAS  PubMed  Google Scholar 

  • Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS (2007) Environmental fate and toxicology of fipronil. J Pestic Sci 32:189–199

    Article  CAS  Google Scholar 

  • Hainzl D, Cole LM, Casida JE (1998) Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem Res Toxicol 11:1529–1535

    Article  CAS  PubMed  Google Scholar 

  • Han C, Hu BZ, Li Z, Liu CQ, Wang N, Fu CC, Shen Y (2020) Determination of fipronil and four metabolites in foodstuffs of animal origin using a modified QuEChERS method and GC-NCI-MS/MS. Food Anal Method 14:237–249

    Article  Google Scholar 

  • Hu Y, Bai Y, Yu H, Zhang C, Chen J (2013) Degradation of selected organophosphate pesticides in wastewater by dielectric barrier discharge plasma. B Environ Contam Toxicol 91:314–319

    Article  CAS  Google Scholar 

  • Huang Y, Lin Z, Zhang W, Pang S, Bhatt P, Rene ER, Kumar AJ, Chen S (2020) New insights into the microbial degradation of D-cyphenothrin in contaminated water/soil environments. Microorganisms 8:473

  • Ikehata K, El-Din MG (2005) Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (Part I). Ozone-Sci Eng 27:83–114

    Article  CAS  Google Scholar 

  • Jiang X, Yang S, Yan Y, Lin F, Zhang L, Zhao W (2020) Design, synthesis, and insecticidal activity of 5,5-disubstituted 4,5-dihydropyrazolo 1,5-a quinazolines as novel antagonists of GABA receptors. J Agric Food Chem 68:15005–15014

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Gao Y, Zhang H, Wang L, Yang K, Dong H (2020) Detoxification enzymes associated with butene-fipronil resistance in Epacromius coerulipes. Pest Manag Sci 76:227–235

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh B, Gupta VK (2012) Biodegradation of fipronil by Paracoccus sp. in different types of soil. B Environ Contam Toxicol 88:781–787

    Article  CAS  Google Scholar 

  • Lao W (2021) Fiproles as a proxy for ecological risk assessment of mixture of fipronil and its degradates in effluent-dominated surface waters. Water Res 188:116510

    Article  CAS  PubMed  Google Scholar 

  • Lewis KA, Tzilivakis J, Warner DJ, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22:1050–1064

    Article  CAS  Google Scholar 

  • Li SP, Jiang YY, Cao XH, Dong YW, Dong M, Xu J (2013) Degradation of nitenpyram pesticide in aqueous solution by low-temperature plasma. Environ Technol 34:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Pang S, Zhang W, Mishra S, Bhatt P, Chen S (2020) Degradation of acephate and its intermediate methamidophos: mechanisms and biochemical pathways. Front Microbiol 11:2045

  • Lin Z, Pang S, Zhou Z, Wu X, Bhatt P, Chen S (2021) Current insights into the microbial degradation for butachlor: strains, metabolic pathways, and molecular mechanisms. Appl Microbiol Biotechnol 105:4369–4381

  • Liu X, Liang M, Liu Y, Fan X (2017) Directed evolution and secretory expression of a pyrethroid-hydrolyzing esterase with enhanced catalytic activity and thermostability. Microb Cell Fact 16:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Y, Guo W, Ngo HH, Long Duc N, Hai FI, Zhang J (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    Article  PubMed  CAS  Google Scholar 

  • Mandal K, Singh B, Jariyal M, Gupta VK (2013) Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicol Environ Saf 93:87–92

    Article  CAS  PubMed  Google Scholar 

  • Mandal K, Singh B, Jariyal M, Gupta VK (2014) Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere 101:55–60

    Article  CAS  PubMed  Google Scholar 

  • Masutti CSM, Mermut AR (2007a) Degradation of fipronil under laboratory conditions in a tropical soil from sirinhaem pernambuco. Brazil J Environ Sci Health B 42:33–43

    Article  CAS  PubMed  Google Scholar 

  • Masutti CSM, Mermut AR (2007b) Sorption of fipronil and its sulfide derivative by soils and goethite. Geoderma 140:1–7

    Article  CAS  Google Scholar 

  • Mcmahen RL, Strynar MJ, Mcmillan L, Derose E, Lindstrom AB (2016) Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater. Sci Total Environ 569:880–887

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Zhang WP, Lin ZQ, Pang SM, Huang YH, Bhatt P (2020) Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere 259:127429

    Article  CAS  Google Scholar 

  • Mohapatra S, Deepa M, Jagdish GK, Rashmi N, Kumar S, Prakash GS (2010) Fate of fipronil and its metabolites in/on grape leaves, berries and soil under semi arid tropical climatic conditions. B Environ Contam Toxicol 84:587–591

    Article  CAS  Google Scholar 

  • Monard C, Martin-Laurent F, Lima O, Devers-Lamrani M, Binet F (2013) Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation 24:203–213

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee I (2006) Sorption of fipronil in tropical soils. B Environ Contam Toxicol 76:334–340

    Article  CAS  Google Scholar 

  • Mulrooney JE (2002) Efficacy of fipronil aerially applied in oil adjuvants and drift retardants against boll weevils, Anthonomus grandis Boheman (Coleoptera: Curculionidae). Southwest Entomol 27:201–207

    CAS  Google Scholar 

  • Mulvey J, Cresswell JE (2020) Time-dependent effects on bumble bees of dietary exposures to farmland insecticides (imidacloprid, thiamethoxam and fipronil). Pest Manag Sci 76:2843–2853

    Article  CAS  Google Scholar 

  • Ngim KK, Mabury SA, Crosby DG (2000) Elucidation of fipronil photodegradation pathways. J Agric Food Chem 48:4661–4665

    Article  CAS  PubMed  Google Scholar 

  • Ngim KK, Crosby DG (2001) Abiotic processes influencing fipronil and desthiofipronil dissipation in California, USA, rice fields. Environ Toxicol Chem

  • Paliwal R, Uniyal S, Verma M, Kumar A, Rai JPN (2016) Process optimization for biodegradation of black liquor by immobilized novel bacterial consortium. Desalin Water Treat 57:18915–18926

    Article  CAS  Google Scholar 

  • Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S (2020) Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Front Microbiol 11:868

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  CAS  Google Scholar 

  • Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Mcfield M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van Der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut R 22:68–102

    Article  CAS  Google Scholar 

  • Pizzul L, Castillo MDP, Stenstrom J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20:751–759

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Vrijmoed LLP (2000) Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol 16:317–318

    Article  CAS  Google Scholar 

  • Prada-Vasquez MA, Estrada-Florez SE, Serna-Galvis EA, Torres-Palma RA (2021) Developments in the intensification of photo-Fenton and ozonation-based processes for the removal of contaminants of emerging concern in Ibero-American countries. Sci Total Environ 765:142699–142699

    Article  CAS  PubMed  Google Scholar 

  • Prakasham RS, Rao CS, Rao RS, Rajesham S, Sarma PN (2005) Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology. Appl Biochem Biotech 120:133–144

    Article  CAS  Google Scholar 

  • Qian C, Dai J, Tian Y, Duan Y, Li Y (2020) Efficient degradation of fipronil in water by microwave-induced argon plasma: mechanism and degradation pathways. Sci Total Environ 725:138487

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Gao Y, Xu P, Guo B, Li J, Wang H (2015) Enantioselective bioaccumulation and toxic effects of fipronil in the earthworm Eisenia foetida following soil exposure. Pest Manag Sci 71:553–561

    Article  CAS  PubMed  Google Scholar 

  • Qu H, Ma RX, Liu DH, Gao J, Wang F, Zhou ZQ, Wang P (2016) Environmental behavior of the chiral insecticide fipronil: enantioselective toxicity, distribution and transformation in aquatic ecosystem. Water Res 105:138–146

    Article  CAS  PubMed  Google Scholar 

  • Ramasubramanian T, Paramasivam M (2017) Determination and dissipation of fipronil and its metabolites in/on sugarcane crop. Int J Environ an Ch 97:1037–1052

    Article  CAS  Google Scholar 

  • Raveton M, Aajoud A, Willison JC, Aouadi H, Tissut M, Ravanel P (2006) Phototransformation of the insecticide fipronil: identification of novel photoproducts and evidence for an alternative pathway of photodegradation. Environ Sci Technol 40:4151–4157

    Article  CAS  PubMed  Google Scholar 

  • Saini S, Rani M, Kumari B (2014) Persistence of fipronil and its metabolites in soil under field conditions. Environ Monit Assess 186:69–75

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Chen L, Wan Y, Zeng H, Xia W (2020a) Spatial variation of fipronil and its derivatives in tap water and ground water from China and the fate of them during drinking water treatment in Wuhan, central China. Chemosphere 251:126385

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Jiang Y, Wan Y, Huang J, Meng Q, He Z, Xu S, Xia W (2020b) Occurrence of the insecticide fipronil and its degradates in indoor dust from South, Central, and North China. Sci Total Environ 741:140110

    Article  CAS  PubMed  Google Scholar 

  • Shuai X, Chen J, Ray C (2012) Adsorption, transport and degradation of fipronil termiticide in three Hawaii soils. Pest Manag Sci 68:731–739

    Article  CAS  PubMed  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34

    Article  CAS  Google Scholar 

  • Stevens MM, Helliwell S, Warren GN (1998) Fipronil seed treatments for the control of chironomid larvae (Diptera: Chironomidae) in aerially-sown rice crops. Field Crops Res 57:195–207

    Article  Google Scholar 

  • Tan H, Cao Y, Tang T, Qian K, Chen WL, Li J (2008) Biodegradation and chiral stability of fipronil in aerobic and flooded paddy soils. Sci Total Environ 407:428–437

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Gao Y, Chen Y, Liu G, Ju X (2019) Identification of the fipronil resistance associated mutations in nilaparvata lugens GABA receptors by molecular modeling. Molecules 24:4116

    Article  CAS  PubMed Central  Google Scholar 

  • Tingle CCD, Rother JA, Dewhurst CF, Lauer S, King WJ (2003) Fipronil: environmental fate, ecotoxicology, and human health concerns. in Rev Environ Contam Toxicol ed. GW Ware, 176:1–66

  • Uniyal S, Paliwal R, Sharma RK, Rai JPN (2016) Degradation of fipronil by Stenotrophomonas acidaminiphila isolated from rhizospheric soil of Zea mays. 3 Biotech 6:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Tri Manh T, Vinh Thi N, Wang A, Wang J, Kannan K (2021) Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. Sci Total Environ 750:141507

    Article  CAS  PubMed  Google Scholar 

  • Wang TC, Lu N, Li J, Wu Y (2010a) Degradation of pentachlorophenol in soil by pulsed corona discharge plasma. J Hazard Mater 180:436–441

    Article  CAS  PubMed  Google Scholar 

  • Wang TC, Lu N, Li J, Wu Y (2010b) Evaluation of the potential of pentachlorophenol degradation in soil by pulsed corona discharge plasma from soil characteristics. Environ Sci Technol 44:3105–3110

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, Yuan Z (2016) Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol 46:876–899

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li H, You J (2019) Enantioselective degradation and bioaccumulation of sediment-associated fipronil in Lumbriculus variegatus: toxicokinetic analysis. Sci Total Environ 672:335–341

    Article  CAS  PubMed  Google Scholar 

  • Weston DP, Lydy MJ (2014) Toxicity of the insecticide fipronil and its degradates to benthic macroinvertebrates of urban streams. Environ Sci Technol 48:1290–1297

    Article  CAS  PubMed  Google Scholar 

  • Wolfand JM, Lefevre GH, Luthy RG (2016) Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor. Environ Sci Proc Imp 18:1256–1265

    CAS  Google Scholar 

  • Yang J, Feng Y, Zhan H, Liu J, Yang F, Zhang K, Zhang L, Chen S (2018) Characterization of a pyrethroid-degrading Pseudomonas fulva strain P31 and biochemical degradation pathway of D-phenothrin. Front Microbiol 9:1003

  • Yin M, Ma T, Zhang J, Huang M, Ma B (2006) The effect of high-pressure arc discharge plasma on the degradation of chlorpyrifos. Plasma Sci Technol 8:727–731

    Article  CAS  Google Scholar 

  • Ying GG, Kookana RS (2001) Sorption of fipronil and its metabolites on soils from South Australia. J Environ Sci Health, Part B 36:545–558

    Article  CAS  Google Scholar 

  • Ying GG, Kookana R (2002) Laboratory and field studies on the degradation of fipronil in a soil. Aust J Soil Res 40:1095–1102

    Article  CAS  Google Scholar 

  • Zhan H, Feng Y, Fan X, Chen S (2018) Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 102: 5033–5043

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Lin Z, Pang S, Bhatt P, Chen S (2020) Insights into the biodegradation of lindane (γ-hexachlorocyclohexane) using a microbial system. Front Microbiol 11: 522

  • Zhang Q, Zhang L, Li Z, Zhang L, Li D (2019) Enhancement of fipronil degradation with eliminating its toxicity in a microbial fuel cell and the catabolic versatility of anodic biofilm. Bioresour Technol 290:121723

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang W, Li J, Pang S, Mishra S, Bhatt P, Zeng D, Chen S (2021) Emerging technologies for degradation of dichlorvos: a review. Int J Environ Res Public Health 18:5789

  • Zhou P, Lu YT, Liu BF, Gan JJ (2004) Dynamics of fipronil residue in vegetable-field ecosystem. Chemosphere 57:1691–1696

    Article  PubMed  CAS  Google Scholar 

  • Zhu GN, Wu HM, Guo JF, Kimaro FME (2004) Microbial degradation of fipronil in clay loam soil. Water Air Soil Pollut 153:35–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the grants from the Key-Area Research and Development Program of Guangdong Province, China (2018B020206001, 2020B0202090001), the Natural Science Foundation of Guangdong Province (2021A1515010889), and Guangdong Special Support Program (2017TQ04N026).

Author information

Authors and Affiliations

Authors

Contributions

SC conceived of the presented idea. ZZ contributed to the writing and prepared the figures and tables. XW, ZL, SP, SM, and SC participated in revising the manuscript. All authors approved it for publication.

Corresponding author

Correspondence to Shaohua Chen.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wu, X., Lin, Z. et al. Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives. Appl Microbiol Biotechnol 105, 7695–7708 (2021). https://doi.org/10.1007/s00253-021-11605-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11605-3

Keywords

Navigation