Skip to main content

Advertisement

Log in

Bone imaging findings in genetic and acquired lipodystrophic syndromes: an imaging study of 24 cases

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To describe the bone imaging features of lipodystrophies in the largest cohort ever published.

Materials and Methods

We retrospectively examined bone imaging data in 24 patients with lipodystrophic syndromes. Twenty-two had genetic lipodystrophy: 12/22 familial partial lipodystrophy (FPLD) and 10/22 congenital generalized lipodystrophy (CGL), 8 with AGPAT2-linked CGL1 and 2 with seipin-linked CGL2. Two patients had acquired generalized lipodystrophy (AGL) in a context of non-specific autoimmune disorders. Skeletal radiographs were available for all patients, with radiographic follow-up for two. Four patients with CGL1 underwent MRI, and two of them also underwent CT.

Results

Patients with FPLD showed non-specific degenerative radiographic abnormalities. Conversely, CGL patients showed three types of specific radiographic alterations: diffuse osteosclerosis (in 7 patients, 6 with CGL1 and 1 with CGL2), well-defined osteolytic lesions sparing the axial skeleton (7 CGL1 and 1 CGL2), and pseudo-osteopoikilosis (4 CGL1). Pseudo-osteopoikilosis was the sole bone abnormality observed in one of the two patients with AGL. Osteolytic lesions showed homogeneous low signal intensity (SI) on T1-weighted and high SI on T2-weighted MR images. Most of them were asymptomatic, although one osteolytic lesion resulted in a spontaneous knee fracture and secondary osteoarthritis in a patient with CGL1. MRI also showed diffuse fatty bone marrow alterations in patients with CGL1, with intermediate T1 and high T2 SI, notably in radiographically normal areas.

Conclusions

The three types of peculiar imaging bone abnormalities observed in generalized lipodystrophic syndromes (diffuse osteosclerosis, lytic lesions and/or pseudo-osteopoikilosis) may help clinicians with an early diagnosis in pauci-symptomatic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Robbins AL, Savage DB. The genetics of lipid storage and human lipodystrophies. Trends Mol Med. 2015;21(7):433–8.

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal AK, Arioglu E, de Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  3. Magré J, Delépine M, Khallouf E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70.

    Article  PubMed  Google Scholar 

  4. Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  5. Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.

    CAS  PubMed  Google Scholar 

  6. Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364(8):740–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Savage DB, Semple RK, Clatworthy MR, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  8. Vatier C, Bidault G, Briand N, et al. What the genetics of lipodystrophy can teach us about insulin resistance and diabetes. Curr Diab Rep. 2013;13(6):757–67.

    Article  CAS  PubMed  Google Scholar 

  9. Güell-González JR, De Acosta O, Alavez-Martín E, et al. O. Bone lesions in congenital generalised lipodystrophy. Lancet. 1971;298(7715):104–5.

    Article  Google Scholar 

  10. Fleckenstein JL, Garg A, Bonte FJ, et al. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.

    Article  CAS  Google Scholar 

  11. Kaplan PA, Dussault RG, Buchanan PK, et al. Musculoskeletal case of the day. Congenital lipoatrophic diabetes. AJR Am J Roentgenol. 1996;167(1):252–3.

    Article  CAS  PubMed  Google Scholar 

  12. Sebrechts C, Garvey WT, Sartoris DJ, et al. Case report 417. Skelet Radiol. 1987;16(4):320–3.

    Article  CAS  Google Scholar 

  13. Shinya T, Sato S, Akaki S, et al. Computed tomography findings of congenital generalized lipodystrophy: multiple nodular fatty liver and diffuse sclerosis of bones. Radiat Med. 2007;25(9):484–7.

    Article  PubMed  Google Scholar 

  14. Westvik J. Radiological features in generalized lipodystrophy. Acta Paediatr. 1996;85(s413):44–51.

    Article  Google Scholar 

  15. Zufferey P, Laredo JD. Serous transformation of marrow of distal femoral epiphysis in a patient with congenital general lipodystrophy and spondylarthritis. Jt Bone Spine Rev Rhum. 2013;80(6):666.

    Article  Google Scholar 

  16. Lodwick GS, Wilson AJ, Farrell C, et al. Determining growth rates of focal lesions of bone from radiographs. Radiology. 1980;134(3):577–83.

    Article  CAS  PubMed  Google Scholar 

  17. Laredo JD. The diagnosis of localized osteolysis-. Ann Radiol (Paris). 1997;40(2):107–20.

    CAS  Google Scholar 

  18. Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan Variety) 1. J Clin Endocrinol Metab. 1999;84(1):170–4.

    CAS  PubMed  Google Scholar 

  19. Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab. 2003;88(11):5433–7.

    Article  CAS  PubMed  Google Scholar 

  20. Miranda DM, Wajchenberg BL, Calsolari MR, et al. Novel mutations of the BSCL2 and AGPAT2 genes in 10 families with Berardinelli-Seip congenital generalized lipodystrophy syndrome. Clin Endocrinol (Oxf). 2009;71(4):512–7.

    Article  CAS  Google Scholar 

  21. Scheller EL, Rosen CJ. What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci. 2014;1311(1):14–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gregory JM, Arkader A, Bothari A, et al. Case report: unicameral bone cysts in a young patient with acquired generalized lipodystrophy. Clin Orthop Relat Res. 2010;468(5):1440–6.

    Article  PubMed  Google Scholar 

  23. Vande Berg BC, Malghem J, Lecouvet FE, et al. Distribution of serouslike bone marrow changes in the lower limbs of patients with anorexia nervosa: predominant involvement of the distal extremities. AJR Am J Roentgenol. 1996;166(3):621–5.

    Article  CAS  PubMed  Google Scholar 

  24. Böhm J. Gelatinous transformation of the bone marrow: the spectrum of underlying diseases. Am J Surg Pathol. 2000;24(1):56–65.

    Article  PubMed  Google Scholar 

  25. Wilson DE, Chan I-F, Stevenson KB, et al. Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids in acquired total lipodystrophy: effects on hyperlipoproteinemia and endogenous insulin resistance*. J Clin Endocrinol Metab. 1983;57(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  26. Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69(3):501–16.

    Article  CAS  PubMed  Google Scholar 

  27. Haque WA, Shimomura I, Matsuzawa Y, et al. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.

    Article  CAS  PubMed  Google Scholar 

  30. Caron M, Auclair M, Donadille B, et al. Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ. 2007;14(10):1759–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémie Sellam.

Ethics declarations

Competing interest

None of the authors have any competing interests in the manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teboul-Coré, S., Rey-Jouvin, C., Miquel, A. et al. Bone imaging findings in genetic and acquired lipodystrophic syndromes: an imaging study of 24 cases. Skeletal Radiol 45, 1495–1506 (2016). https://doi.org/10.1007/s00256-016-2457-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2457-9

Keywords

Navigation