Skip to main content
Log in

New starch-based radiotracer for lung perfusion scintigraphy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

In order to avoid the microbiological risks linked to human serum albumin macroaggregates (MAA) used for lung perfusion scintigraphy, we developed a new starch-based Tc-99m potential radiopharmaceutical.

Methods

Microparticles were prepared from oxidised starch coupled to natural polyamine for Tc-99m complexation. Suspensions were formulated as ready-to-use kits for easy one-step labelling procedures.

Results

Particle-size analysis, electron microscopy, and confocal microscopy were performed for microparticle characterisation, and gave a typical size distribution ranging from 7 to 63 µm, with a homogenous population of spherical or oval-shaped microparticles. Radiochemical purity exceeded 95%, and was stable for at least 8 h. When challenged with histidine and human plasma, labelling was also stable. Dynamic scintigraphic acquisitions and biodistribution studies conducted on healthy Wistar rats showed a tracer accumulation with more than 80% of the ID in the lungs after 15 min.

Conclusions

With clinically significant characteristics such as a lung half-life of 3 h, a lung-to-vascular ratio of 900, and a lung-to-liver ratio of 90, starch-based microparticles exhibit all the qualities for an effective new lung perfusion agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bosson JL, Pouchain D, Bergmann JF. A prospective observational study of a cohort of outpatients with an acute medical event and reduced mobility: incidence of symptomatic thromboembolism and description of thromboprophylaxis practices. J Intern Med. 2006;260(2):168–76.

    Article  PubMed  Google Scholar 

  2. Heit JA. The epidemiology of venous thromboembolism in the community. Arterioscler Thromb Vasc Biol. 2008;28(3):370–2.

    Article  CAS  PubMed  Google Scholar 

  3. Oger E. Incidence of venous thromboembolism: a community-based study in western France. EPI-GETBP Study Group. Groupe d'Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost. 2000;83(5):657–60.

    CAS  PubMed  Google Scholar 

  4. Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999;353(9162):1386–9.

    Article  CAS  PubMed  Google Scholar 

  5. van Erkel AR, et al. Spiral CT angiography for suspected pulmonary embolism: a cost-effectiveness analysis. Radiology. 1996;201(1):29–36.

    PubMed  Google Scholar 

  6. van Rossum AB, et al. Can helical CT replace scintigraphy in the diagnostic process in suspected pulmonary embolism? A retrolective-prolective cohort study focusing on total diagnostic yield. Eur Radiol. 1998;8(1):90–6.

    Article  PubMed  Google Scholar 

  7. DeMonaco NA, et al. Pulmonary embolism incidence is increasing with use of spiral computed tomography. Am J Med. 2008;121(7):611–7.

    Article  PubMed  Google Scholar 

  8. Nijkeuter M, Huisman MV. Diagnostic methods in pulmonary embolism. Eur J Intern Med. 2005;16(4):247–56.

    Article  CAS  PubMed  Google Scholar 

  9. Sostman HD, et al. Acute pulmonary embolism: sensitivity and specificity of ventilation-perfusion scintigraphy in PIOPED II study. Radiology. 2008;246(3):941–6.

    Article  PubMed  Google Scholar 

  10. Worsley DF, Alavi A. Radionuclide imaging of acute pulmonary embolism. Semin Nucl Med. 2003;33(4):259–78.

    Article  PubMed  Google Scholar 

  11. Perkins AC, Frier M. Bad blood and biologicals: the need for new radiopharmaceutical source materials. Nucl Med Commun. 1999;20(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  12. Delgado A, et al. Radiolabelled biodegradable microspheres for lung imaging. Eur J Pharm Biopharm. 2000;50(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  13. Miroslavov AE, et al. Evaluation of (99m)Tc(CO)(5)I as a potential lung perfusion agent. Nucl Med Biol. 2009;36(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hunt AP, et al. Preparation of Tc-99m-macroaggregated albumin from recombinant human albumin for lung perfusion imaging. Eur J Pharm Biopharm. 2006;62(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  15. Tsopelas C, Dylan F, Barthomomeusz L. A potential lung perfusion imaging agent of synthetic origin. J Label Compd Radiopharm. 2006;49:367–75.

    Article  CAS  Google Scholar 

  16. Rohtman USE, Kagedal SL, Soderberg JL, Agent for intravascular administration. Pharmacia Fine Chemicals AB, 1978. US 4115536.

  17. Denizot B, et al., New compositions based on polysaccharides grafted by polyamine or polysulphurised compounds. Cyclopharma Laboratoires, 2007. WO2009013358.

  18. Taplin GV. The history of lung imaging with radionuclides. Semin Nucl Med. 1979;9(3):178–85.

    Article  CAS  PubMed  Google Scholar 

  19. European Pharmacopeia. 5th ed. 2005, Strasbourg: European Directorate for the Quality of Medicines.

  20. Bellande E, Jallet P, Denizot B, Radiopharmaceutical products and their preparation procedure. Cis Bio International, 2001. WO 01/15746 A1.

  21. Taplin GV, MacDonald NS. Radiochemistry of macroaggregated albumin and newer lung scanning agents. Semin Nucl Med. 1971;1(2):132–52.

    Article  CAS  PubMed  Google Scholar 

  22. Dakhil S, et al. Improved regional selectivity of hepatic arterial BCNU with degradable microspheres. Cancer. 1982;50(4):631–5.

    Article  CAS  PubMed  Google Scholar 

  23. Arfors KE, et al. Temporary intestinal hypoxia induced by degradable microspheres. Nature. 1976;262(5568):500–1.

    Article  CAS  PubMed  Google Scholar 

  24. Forsberg JO. Transient blood flow reduction induced by intra-arterial injection of degradable starch microspheres. Experiments on rats. Acta Chir Scand. 1978;144(5):275–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to E. Porcher for skilful technical support (Inserm U646, University of Angers, F-49100 Angers, France), to Dr. R. Filmon and R. Mallet (SCIAM, University of Angers, F-49100 Angers, France) for microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Lacoeuille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacoeuille, F., Hindré, F., Denizot, B. et al. New starch-based radiotracer for lung perfusion scintigraphy. Eur J Nucl Med Mol Imaging 37, 146–155 (2010). https://doi.org/10.1007/s00259-009-1226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1226-6

Keywords

Navigation