Skip to main content
Log in

[18F]FDG PET-CT in patients with DLBCL treated with CAR-T cell therapy: a practical approach of reporting pre- and post-treatment studies

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The introduction of CD19-specific chimeric antigen receptor T-cell therapy (CAR-T) for treatment of relapsed/refractory diffuse large B cell lymphoma (R/R DLBCL) gives hope to patients with otherwise dismal prognosis. Therapy outcomes, however, depend upon selection of patients and accurate early identification of non-responders. Patients treated with CAR-T usually undergo [18F]FDG PET-CT at time of decision (TD), time of CAR-T transfusion (TT), 1 month (M1), and 3 months (M3) post-therapy. The purpose of the current study was to identify the specific parameters that should be addressed when reporting PET-CT studies in the clinical setting of CAR-T therapy.

Methods

A total of 138 PET-CT scans (30 TD, 42 TT, 44 M1, 22 M3) of 48 patients treated with CAR-T were included. SUVmax, TMTV, and TLG were calculated in all scans. Response was assessed using the Deauville scale and ΔSUVmax method. Overall survival (OS) was the primary endpoint. Median follow-up was 12.8 (IQR 6.4–16.0) months from CAR-T infusion.

Results

In a univariate analysis, TD-SUVmax > 17.1 and TT-SUVmax > 12.1 were associated with shorter OS (Pv < 0.05). In a multivariate analysis, three factors were significantly associated with shorter OS: TD-SUVmax > 17.1 (HR 10.3; Pv < 0.01), LDH > 450 U/l (HR 7.7; Pv < 0.01), and ECOG score > 1 (HR 5.5; Pv = 0.04). Data from TD and TT PET-CT scans were not predictive of toxicity. On M1-PET-CT, patients with a Deauville score > 3 had significantly shorter OS (median 7.9 months, versus not reached, Pv < 0.01). ΔSUVmax ≤ 66% on M1-PET-CT predicted shorter OS when M1-SUVmax was compared to TD-SUVmax (Pv = 0.02) but not to TT-SUVmax (Pv = 0.38).

Conclusion

Pre-treatment SUVmax may guide patient selection for CAR-T therapy. On M1-PET-CT, Deauville score and ΔSUVmax from TD may identify early therapy failure. These parameters are easy to obtain and should be included in the PET-CT report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

R/R DLBCL:

Relapsed/refractory diffuse large B-cell lymphoma

CD19:

Cluster of differentiation 19

CAR-T:

Chimeric antigen receptor T-cell

CRS:

Cytokine release syndrome

ICANS:

Immune effector cell‐associated neurotoxicity syndrome

ECOG:

Eastern Cooperative Oncology Group

GCB:

Germinal center B-cell like

COO:

Cell of origin

[18F]FDG:

18F-fluorodeoxyglucose

PET-CT:

Positron emission tomography-computed tomography

TD:

Time of decision

TT:

Time of transfusion

M1:

1 Month

M3:

3 Months

SUVmax:

Maximum standardized uptake value

SUVmean:

Mean standardized uptake value

TMTV:

Total metabolic tumor volume

TLG:

Total lesion glycolysis

OS:

Overall survival

PFS:

Progression-free survival

IQR:

Interquartile range

Pv :

P-Value

CI:

Confidence interval

HR:

Hazard ratio

References

  1. Van Den Neste E, Schmitz N, Mounier N, Gill D, Linch D, Trneny M, Milpied N, Radford J, Ketterer N, Shpilberg O, Dührsen U. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 2016;51(1):51–7. https://doi.org/10.1038/bmt.2015.213.

    Article  CAS  Google Scholar 

  2. Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, Link BK, Hay A, Cerhan JR, Zhu L, Boussetta S. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood J Am Soc Hematol. 2017;130(16):1800–8. https://doi.org/10.1182/blood-2017-03-769620.

    Article  CAS  Google Scholar 

  3. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, Deol A. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20(1):31–42. https://doi.org/10.1016/S1470-2045(18)30864-7.

    Article  CAS  PubMed  Google Scholar 

  4. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin JR, Fleury I. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. https://doi.org/10.1056/NEJMoa1804980.

    Article  CAS  PubMed  Google Scholar 

  6. Neelapu SS. Managing the toxicities of car T-cell therapy. Hematol Oncol. 2019;37:48–52. https://doi.org/10.1002/hon.2595.

    Article  CAS  PubMed  Google Scholar 

  7. Sievers S, Watson G, Johncy S, Adkins S. Recognizing and grading CAR T-cell toxicities: an advanced practitioner perspective. Front Oncol. 2020;24(10):885. https://doi.org/10.3389/fonc.2020.00885.

    Article  Google Scholar 

  8. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, Maus MV, Park JH, Mead E, Pavletic S, Go WY. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38. https://doi.org/10.1016/j.bbmt.2018.12.758.

    Article  CAS  PubMed  Google Scholar 

  9. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059. https://doi.org/10.1200/JCO.2013.54.8800.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dührsen U, Müller S, Hertenstein B, Thomssen H, Kotzerke J, Mesters R, Berdel WE, Franzius C, Kroschinsky F, Weckesser M, Kofahl-Krause D. Positron emission tomography-guided therapy of aggressive non-Hodgkin lymphomas (PETAL): a multicenter, randomized phase III trial. J Clin Oncol. 2018;36(20):2024–34. https://doi.org/10.1200/JCO.2017.76.8093.

    Article  PubMed  Google Scholar 

  11. Burggraaff CN, de Jong A, Hoekstra OS, Hoetjes NJ, Nievelstein RA, Jansma EP, Heymans MW, de Vet HC, Zijlstra JM. Predictive value of interim positron emission tomography in diffuse large B-cell lymphoma: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2019;46(1):65–79. https://doi.org/10.1007/s00259-018-4103-3.

    Article  PubMed  Google Scholar 

  12. Cashen AF, Dehdashti F, Luo J, Homb A, Siegel BA, Bartlett NL. 18F-FDG PET/CT for early response assessment in diffuse large B-cell lymphoma: poor predictive value of international harmonization project interpretation. J Nucl Med. 2011;52(3):386–92. https://doi.org/10.2967/jnumed.110.082586.

    Article  PubMed  Google Scholar 

  13. Pregno P, Chiappella A, Bello M, Botto B, Ferrero S, Franceschetti S, Giunta F, Ladetto M, Limerutti G, Menga M, Nicolosi M. Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood J Am Soc Hematol. 2012;119(9):2066–73. https://doi.org/10.1182/blood-2011-06-359943.

    Article  CAS  Google Scholar 

  14. González-Barca E, Canales M, Cortés M, Vidal MJ, Salar A, Oriol A, Bargay J, Bello JL, Sánchez JJ, Tomás JF, Donato E. Predictive value of interim 18F-FDG-PET/CT for event-free survival in patients with diffuse large B-cell lymphoma homogenously treated in a phase II trial with six cycles of R-CHOP-14 plus pegfilgrastim as first-line treatment. Nucl Med Commun. 2013;34(10):946–52. https://doi.org/10.1097/MNM.0b013e328363c695.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Y, Lu J, Wei X, Song S, Huang G. The predictive value of interim and final [18F] fluorodeoxyglucose positron emission tomography after rituximab-chemotherapy in the treatment of non-Hodgkin’s lymphoma: a meta-analysis. Biomed Res Int. 2013;1:2013. https://doi.org/10.1155/2013/275805.

    Article  CAS  Google Scholar 

  16. Mamot C, Klingbiel D, Hitz F, Renner C, Pabst T, Driessen C, Mey U, Pless M, Bargetzi M, Krasniqi F, Gigli F. Final results of a prospective evaluation of the predictive value of interim positron emission tomography in patients with diffuse large B-cell lymphoma treated with R-CHOP-14 (SAKK 38/07). J Clin Oncol. 2015;33(23):2523–9. https://doi.org/10.1200/JCO.2014.58.9846.

    Article  CAS  PubMed  Google Scholar 

  17. Kostakoglu L, Martelli M, Sehn LH, Belada D, Carella AM, Chua N, Gonzalez-Barca E, Hong X, Pinto A, Shi Y, Tatsumi Y. End-of-treatment PET/CT predicts PFS and OS in DLBCL after first-line treatment: results from GOYA. Blood Adv. 2021;5(5):1283–90. https://doi.org/10.1182/bloodadvances.2020002690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rekowski J, Hüttmann A, Schmitz C, Müller SP, Kurch L, Kotzerke J, Franzius C, Weckesser M, Bengel FM, Freesmeyer M, Hertel A. Interim PET evaluation in diffuse large B-cell lymphoma employing published recommendations: comparison of the Deauville 5-point scale and the ΔSUVmax method. J Nucl Med. 2020. https://doi.org/10.2967/jnumed.120.244145.

    Article  PubMed  Google Scholar 

  19. Vercellino L, Di Blasi R, Kanoun S, Tessoulin B, Rossi C, D’Aveni-Piney M, Obéric L, Bodet-Milin C, Bories P, Olivier P, Lafon I. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2020;4(22):5607–15. https://doi.org/10.1182/bloodadvances.2020003001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang J, Hu Y, Yang S, Wei G, Zhao X, Wu W, Zhang Y, Zhang Y, Chen D, Wu Z, Xiao L. Role of fluorodeoxyglucose positron emission tomography/computed tomography in predicting the adverse effects of chimeric antigen receptor T cell therapy in patients with non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2019;25(6):1092–8. https://doi.org/10.1016/j.bbmt.2019.02.008.

    Article  CAS  PubMed  Google Scholar 

  21. Iacoboni G, Simó M, Villacampa G, Catalá E, Carpio C, Díaz-Lagares C, Vidal-Jordana Á, Bobillo S, Marín-Niebla A, Pérez A, Jiménez M. Prognostic impact of total metabolic tumor volume in large B-cell lymphoma patients receiving CAR T-cell therapy. Ann Hematol. 2021;8:1–8. https://doi.org/10.1007/s00277-021-04560-6.

    Article  CAS  Google Scholar 

  22. Shah NN, Nagle SJ, Torigian DA, Farwell MD, Hwang WT, Frey N, Nasta SD, Landsburg D, Mato A, June CH, Schuster SJ. Early positron emission tomography/computed tomography as a predictor of response after CTL019 chimeric antigen receptor–T-cell therapy in B-cell non-Hodgkin lymphomas. Cytotherapy. 2018;20(12):1415–8. https://doi.org/10.1016/j.jcyt.2018.10.003.

    Article  CAS  PubMed  Google Scholar 

  23. Derlin T, Schultze-Florey C, Werner RA, Möhn N, Skripuletz T, David S, Beutel G, Eder M, Ross TL, Bengel FM, Ganser A. 18 F-FDG PET/CT of off-target lymphoid organs in CD19-targeting chimeric antigen receptor T-cell therapy for relapsed or refractory diffuse large B-cell lymphoma. Ann Nucl Med. 2021;35(1):132–8. https://doi.org/10.1007/s12149-020-01544-w.

    Article  CAS  PubMed  Google Scholar 

  24. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the first international workshop on interim-PET scan in lymphoma. Leuk Lymphoma. 2009;50(8):1257–60. https://doi.org/10.1080/10428190903040048.

    Article  PubMed  Google Scholar 

  25. Schmitz C, Hüttmann A, Müller SP, Hanoun M, Boellaard R, Brinkmann M, Jöckel KH, Dührsen U, Rekowski J. Dynamic risk assessment based on positron emission tomography scanning in diffuse large B-cell lymphoma: post-hoc analysis from the PETAL trial. Eur J Cancer. 2020;1(124):25–36. https://doi.org/10.1016/j.ejca.2019.09.027.

    Article  CAS  Google Scholar 

  26. Casasnovas RO, Meignan M, Berriolo-Riedinger A, Bardet S, Julian A, Thieblemont C, Vera P, Bologna S, Brière J, Jais JP, Haioun C. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood J Am Soc Hematol. 2011;118(1):37–43. https://doi.org/10.1182/blood-2010-12-327767.

    Article  CAS  Google Scholar 

  27. Toledano MN, Vera P, Tilly H, Jardin F, Becker S. Comparison of therapeutic evaluation criteria in FDG-PET/CT in patients with diffuse large-cell B-cell lymphoma: prognostic impact of tumor/liver ratio. PLoS ONE. 2019;14(2):e0211649. https://doi.org/10.1371/journal.pone.0211649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Sun X, Li J, Liu Z, Mi M, Zhu F, Wu G, Lan X, Zhang L. Interim PET/CT based on visual and semiquantitative analysis predicts survival in patients with diffuse large B-cell lymphoma. Cancer Med. 2019;8(11):5012–22. https://doi.org/10.1002/cam4.2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54. https://doi.org/10.1007/s00259-014-2961-x.

    Article  CAS  Google Scholar 

  30. Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Gooley T, Li D, Cherian S, Chen X, Pender BS, Hawkins RM. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood J Am Soc Hematol. 2019;133(17):1876–87. https://doi.org/10.1182/blood-2018-11-887067.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einat Even-Sapir.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All included data were collected as part of a retrospective study protocol approved by the local institutional ethics committee, which waived written informed consent (Reference ID 0503–20-TLV).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hematology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, D., Luttwak, E., Beyar-Katz, O. et al. [18F]FDG PET-CT in patients with DLBCL treated with CAR-T cell therapy: a practical approach of reporting pre- and post-treatment studies. Eur J Nucl Med Mol Imaging 49, 953–962 (2022). https://doi.org/10.1007/s00259-021-05551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05551-5

Keywords

Navigation