Skip to main content
Log in

Elastography: history, principles, and technique comparison

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Elastography is a relatively new imaging technology that creates images of tissue stiffness. It can be thought of an extension of the ancient technique of palpation but it gives better spatial localization information and is less subjective. Two main types of elastography are currently in use, strain elastography where the tissue displacement in response to gentle pressure is used to compute and image tissue strain, and shear wave elastography where the speed of shear waves traversing tissue is measured and used to create an image of tissue stiffness. Each method has advantages and disadvantages but generally strain imaging is excellent for focal lesions and shear wave imaging, being more quantitative, is best for diffuse organ diseases. Strain imaging requires additional training in acquisition technique to obtain high quality images. Pitfalls to avoid and tips for good images are provided. Improvements in strain imaging are focused on better quality indicators and better methods for quantification. Improvements in shear wave imaging will be higher frame rates, greater accuracy in focal lesions, and making results more comparable between different ultrasound systems. Both methods will continue to improve and will provide ever more powerful new tools for diagnosis of diffuse and focal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Allen JP (2005) The art of medicine in ancient egypt. New York: The Metropolitan Museum of Art, p 70

    Google Scholar 

  2. Breasted JH (1991) The Edwin Smith surgical papyrus: published in facsimile and hieroglyphic transliteration with translation and commentary in two volumes. Chicago: University of Chicago Press, p 9

    Google Scholar 

  3. Huangdi Nijing, Wikipedia entry. http://en.wikipedia.org/wiki/Huangdi_Neijing#cite_note-wdl-1. Accessed 10 April 2014

  4. Fu KL, Fu YS, Bassett LW, Cardall LW, Lopen JK (2005) Invasive malignancies. In: Bassett LW (ed) Diagnosis of diseases of the breast, 2nd edn. Philadelphia: Saunders

    Google Scholar 

  5. Kelly KM (1996) Breast ultrasound. Crit Rev Diagn Imaging 37:79–161

    CAS  PubMed  Google Scholar 

  6. Tristam M, Barbosa DC, Cosgrove DO, et al. (1986) Ultrasonic study of in vivo kinetic characteristics of human tissues. Ultrasound Med Biol 12:927–937

    Article  CAS  PubMed  Google Scholar 

  7. Tristam M, Barbosa DC, Cosgrove DO, Bamber JC, Hill CR (1988) Application of Fourier analysis to clinical study of patterns of tissue movement. Ultrasound Med. Biol. 14:695–707

    Article  CAS  PubMed  Google Scholar 

  8. Lerner RM, Parker KJ, Holen J, Gramiak R, Waag RC (1988) Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets. Acoust Imaging 16:317–327

    Article  Google Scholar 

  9. Parker KJ, Huang SR, Musulin RA, Lerner RM (1990) Tissue response to mechanical vibrations for “sonoelasticity imaging”. Ultrasound Med Biol 16:241–246

    Article  CAS  PubMed  Google Scholar 

  10. Wu Z, Taylor LS, Ruben DJ, Parker KJ (2004) Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials. Phys Med Biol 49:911–922

    Article  PubMed  Google Scholar 

  11. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 13(2):111–134

    Article  CAS  PubMed  Google Scholar 

  12. Garra BS, Ophir J, Spratt SR, et al. (1997) Elastography of breast lesions: initial clinical results. Radiology 202:79–86

    Article  CAS  PubMed  Google Scholar 

  13. Sandrin L, Fourquet B, Hasquenoph JM, et al. (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29:1705–1713

    Article  PubMed  Google Scholar 

  14. Itoh A, Ueno E, Tohno E, et al. (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    Article  PubMed  Google Scholar 

  15. Nightingale K, Soo MS, Nightingale R, Trahey G (2002) Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 28(2):227–235

    Article  PubMed  Google Scholar 

  16. Goenezen S, Dord JF, Sink J, et al. (2012) Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis. IEEE Trans Med Imaging 31(8):1628–1637

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yan Z, Zhang S, Alam SK, et al. (2012) Modulus reconstruction from prostate ultrasound images using finite element modeling. In: Proceedings of SPIE 8320, medical imaging 2012: ultrasonic imaging, tomography, and therapy, 832016. doi:10.1117/12.911088

  18. Zhi H, Xiao X-Y, Yang H-Y, et al. (2010) Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol 17(10):1227–1233

    Article  PubMed  Google Scholar 

  19. Cho N, Moon WK, Kim HY, et al. (2010) Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 29(1):1–7

    PubMed  Google Scholar 

  20. Gheonea IA, Stoica Z, Bondari S (2011) Differential diagnosis of breast lesions using ultrasound elastography. Indian J Radiol Imaging 21(4):301–305

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ying L, Hou Y, Zheng H-M, et al. (2012) Real-time elastography for the differentiation of benign and malignant superficial lymph nodes: a meta-analysis. Eur J Radiol 81(10):2576–2584

    Article  PubMed  Google Scholar 

  22. Lyshchik A, Higashi T, Asato R, et al. (2005) Thyroid gland tumor diagnosis at US elastography. Radiology 237(1):202–211

    Article  PubMed  Google Scholar 

  23. Bae U, Dighe M, Dubinsky T, et al. (2007) Ultrasound thyroid elastography using carotid artery pulsation: preliminary study. J Ultrasound Med 26(6):797–805

    PubMed  Google Scholar 

  24. Wang H, Brylka D, Sun LN, et al. (2013) Comparison of strain ratio with elastography score system in differentiating malignant from benign thyroid nodules. Clin Imaging 37(1):50–55

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Tang J, Li YM, et al. (2012) Differentiation of prostate cancer from benign lesions using strain index of transrectal real-time tissue elastography. Eur J Radiol 81:857–862

    Article  PubMed  Google Scholar 

  26. Jia C, Alam SK, Zahiri Azar R, Garra B (2014) Estimation of shear modulus ratio between inclusion and background using strain ratios in 2D ultrasound elastography. IEEE Trans UFFC 61(4):611–619

    Article  Google Scholar 

  27. Moon HJ, Sung JM, Kim EK, et al. (2012) Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology 262(3):1002–1013

    Article  PubMed  Google Scholar 

  28. Bamber J, Cosgrove D, Dietrich CF, et al. (2013) EFSUMB gidelines and recommendations on the clinical use of ultrasound elastography. Part I: basic principles and technology. Ultraschall Med 34:169–184

    Article  CAS  PubMed  Google Scholar 

  29. Cosgrove D, Piscaglia F, Bamber J, et al. (2013) EFSUMB gidelines and recommendations on the clinical use of ultrasound elastography. Part II: clinical applications. Ultraschall Med 34:238–253

    Article  CAS  PubMed  Google Scholar 

  30. Society of Radiologists in Ultrasound (2014) Consensus conference on ultrasound elastography for assessment of diffuse liver disease, Denver, CO, 21–22 October 2014

  31. Hall TJ, Milkowski A, Garra B, et al. (2013) IEEE international ultrasonics symposium (IUS) on RSNA/QIBA: shear wave speed as a biomarker for liver fibrosis staging, pp 397, 400, 21–25 July 2013

  32. Onur MR, Poyraz AK, Ucak EE, et al. (2012) Semiquantitative strain elastography of liver masses. J Ultrasound Med 31(7):1061–1067

    PubMed  Google Scholar 

  33. Guibal A, Boularan C, Bruce M, et al. (2013) Evaluation of shearwave elastography for the characterisation of focal liver lesions on ultrasound. Eur Radiol 23(4):1138–1149

    Article  PubMed  Google Scholar 

  34. Calvaruso V, Bronte F, Conte E, et al. (2013) Modified spleen stiffness measurement by transient elastography is associated with presence of large oesophageal varices in patients with compensated hepatitis C virus cirrhosis. J Viral Hepat 20:867–874

    Article  CAS  PubMed  Google Scholar 

  35. Asano K, Ogata A, Tanaka K, et al. (2014) Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J Ultrasound Med 33:793–801

    Article  PubMed  Google Scholar 

  36. Tan S, Ozcan MF, Tezcan F, et al. (2013) Real-time elastography for distinguishing angiomyolipoma from renal cell carcinoma: preliminary observations. Am J Roentgenol. 200:369–375

    Article  Google Scholar 

  37. Xu W, Shi J, Zeng X, et al. (2011) EUS elastography for the differentiation of benign and malignant lymph nodes: a meta-analysis. GI Endosc 74:1001–1009

    Article  Google Scholar 

  38. Stoelinga B, Hehenkamp WJK, Brolmann HAM, Huirne JAF (2014) Real-time elastography for assessment of uterine disorders. Ultrasound Obstet Gynecol 43(2):218–226

    Article  CAS  PubMed  Google Scholar 

  39. Xie M, Zhang X, Zhan J, Hua K (2013) Application of real-time ultrasound elastography for discrimination of low- and high-grade serous ovarian carcinoma. J Ultrasound Med 32:257–262

    CAS  PubMed  Google Scholar 

  40. Pan X, et al. (2014) A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan. Biomed Eng 13:132

    Google Scholar 

  41. Chino K, Akagi R, Dohi M, Fukashiro S, Takahashi H (2012) Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography. PLoS ONE 7(9):e45764. doi:10.1371/journal.pone.0045764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian S. Garra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garra, B.S. Elastography: history, principles, and technique comparison. Abdom Imaging 40, 680–697 (2015). https://doi.org/10.1007/s00261-014-0305-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0305-8

Keywords

Navigation