Skip to main content
Log in

MHC-dependent desensitization of intrinsic anti-self reactivity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The survival of naïve T cells is compromised in the absence of molecules encoded by the major histocompatibility complex (MHC) while antigen-experienced T cells survive. We hypothesized that survival pressures in an in vivo, MHC-deficient environment would permit enrichment of less frequent antigen-experienced autoreactive cells at the expense of the majority of antigen naïve T cells. To test this hypothesis, we generated MHC class I- and class II-deficient mice in NOD and C57Bl/6 (B6) backgrounds, and examined the capacity of adoptively transferred autoimmune-prone NOD T cells, or non-autoimmune prone naïve B6 T cells, respectively, to reject transplanted wild-type pancreatic islets or transplantable tumors in the MHC-deficient mice. In the MHC-deficient environment, CD4 T cells acquired self-hostile properties (islet rejection and tumor invasion) that were independent from their genetic propensity for autoreactivity, while CD8 T cells required appropriate prior exposure to antigen in order to survive and function (reject tumor) in this environment; however, disengagement of Tob1, a negative regulator of proliferation, led to a reverse phenotype with regard to persistence of CD4 and CD8 T cells in the MHC-deficient environment. Our data suggest that self-peptide/MHC interactions have dual roles to facilitate survival and restrain autoreactivity, thus acting as integral components of an intrinsic network of negative regulation that maintains tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyman O, Purton JF, Surh CD, Sprent J (2007) Cytokines and T-cell homeostasis. Curr Opin Immunol 19:320–326

    Article  PubMed  CAS  Google Scholar 

  2. Cho JH, Boyman O, Kim HO, Hahm B, Rubinstein MP, Ramsey C, Kim DM, Surh CD, Sprent J (2007) An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. J Exp Med 204:1787–1801

    Article  PubMed  CAS  Google Scholar 

  3. Kamimura D, Bevan MJ (2007) Naive CD8+ T cells differentiate into protective memory-like cells after IL-2 anti-IL-2 complex treatment in vivo. J Exp Med 204:1803–1812

    Article  PubMed  CAS  Google Scholar 

  4. Sandau MM, Winstead CJ, Jameson SC (2007) IL-15 is required for sustained lymphopenia-driven proliferation and accumulation of CD8 T cells. J Immunol 179:120–125

    PubMed  CAS  Google Scholar 

  5. Troy AE, Shen H (2003) Cutting edge: homeostatic proliferation of peripheral T lymphocytes is regulated by clonal competition. J Immunol 170:672–676

    PubMed  CAS  Google Scholar 

  6. Min B, Foucras G, Meier-Schellersheim M, Paul WE (2004) Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire. Proc Natl Acad Sci USA 101:3874–3879

    Article  PubMed  CAS  Google Scholar 

  7. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD (2002) Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 195:1523–1532

    Article  PubMed  CAS  Google Scholar 

  8. Shen S, Ding Y, Tadokoro CE, Olivares-Villagomez D, Camps-Ramirez M, Curotto de Lafaille MA, Lafaille JJAG (2005) Control of homeostatic proliferation by regulatory T cells. J Clin Invest 115:3517–3526

    Article  PubMed  CAS  Google Scholar 

  9. Surh CD, Boyman O, Purton JF, Sprent J (2006) Homeostasis of memory T cells. Immunol Rev 211:154–163

    Article  PubMed  CAS  Google Scholar 

  10. Li O, Chang X, Zhang H, Kocak E, Ding C, Zheng P, Liu Y (2006) Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. J Exp Med 203:1713–1720

    Article  PubMed  CAS  Google Scholar 

  11. Rangachari M, Penninger JM (2004) Negative regulation of T cell receptor signals. Curr Opin Pharmacol 4:415–422

    Article  PubMed  CAS  Google Scholar 

  12. Buckley AF, Kuo CT, Leiden JM (2001) Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nat Immunol 2:698–704

    Article  PubMed  CAS  Google Scholar 

  13. Kuo CT, Veselits ML, Leiden JM (1997) LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277:1986–1990

    Article  PubMed  CAS  Google Scholar 

  14. Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA (2001) Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2:1174–1182

    Article  PubMed  CAS  Google Scholar 

  15. Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24:380–386

    Article  PubMed  CAS  Google Scholar 

  16. Baksh S, Widlund HR, Frazer-Abel AA, Du J, Fosmire S, Fisher DE, DeCaprio JA, Modiano JF, Burakoff SJ (2002) NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell 10:1071–1081

    Article  PubMed  CAS  Google Scholar 

  17. Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286:1377–1381

    Article  PubMed  CAS  Google Scholar 

  18. Boursalian TE, Bottomly K (1999) Survival of naive CD4 T cells: roles of restricting versus selecting MHC class II and cytokine milieu. J Immunol 162:3795–3801

    PubMed  CAS  Google Scholar 

  19. Viret C, Janeway CA Jr (1999) MHC and T cell development. Rev Immunogenet 1:91–104

    PubMed  CAS  Google Scholar 

  20. Witherden D, van Oers N, Waltzinger C, Weiss A, Benoist C, Mathis D (2000) Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules. J Exp Med 191:355–364

    Article  PubMed  CAS  Google Scholar 

  21. Martin B, Bourgeois C, Dautigny N, Lucas B (2003) On the role of MHC class II molecules in the survival and lymphopenia-induced proliferation of peripheral CD4+ T cells. Proc Natl Acad Sci USA 100:6021–6026

    Article  PubMed  CAS  Google Scholar 

  22. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192

    PubMed  CAS  Google Scholar 

  23. Hu HM, Poehlein CH, Urba WJ, Fox BA (2002) Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res 62:3914–3919

    PubMed  CAS  Google Scholar 

  24. Markiewicz MA, Brown I, Gajewski TF (2003) Death of peripheral CD8+ T cells in the absence of MHC class I is Fas-dependent and not blocked by Bcl-xL. Eur J Immunol 33:2917–2926

    Article  PubMed  CAS  Google Scholar 

  25. Dorfman JR, Germain RN (2002) MHC-dependent survival of naive T cells? a complicated answer to a simple question. Microbes Infect 4:547–554

    Article  PubMed  CAS  Google Scholar 

  26. Grandjean I, Duban L, Bonney EA, Corcuff E, Di Santo JP, Matzinger P, Lantz O (2003) Are major histocompatibility complex molecules involved in the survival of naive CD4+ T cells? J Exp Med 198:1089–1102

    Article  PubMed  CAS  Google Scholar 

  27. Bhandoola A, Tai X, Eckhaus M, Auchincloss H, Mason K, Rubin SA, Carbone KM, Grossman Z, Rosenberg AS, Singer A (2002) Peripheral expression of self-MHC-II influences the reactivity and self-tolerance of mature CD4(+) T cells: evidence from a lymphopenic T cell model. Immunity 17:425–436

    Article  PubMed  CAS  Google Scholar 

  28. Kassiotis G, Zamoyska R, Stockinger B (2003) Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med 197:1007–1016

    Article  PubMed  CAS  Google Scholar 

  29. Hao Y, Legrand N, Freitas AA (2006) The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. J Exp Med 203:1643–1649

    Article  PubMed  CAS  Google Scholar 

  30. Kieper WC, Burghardt JT, Surh CD (2004) A role for TCR affinity in regulating naive T cell homeostasis. J Immunol 172:40–44

    PubMed  CAS  Google Scholar 

  31. Park JH, Adoro S, Lucas PJ, Sarafova SD, Alag AS, Doan LL, Erman B, Liu X, Ellmeier W, Bosselut R, Feigenbaum L, Singer A (2007) ‘Coreceptor tuning’: cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat Immunol 8:1049–1059

    Article  PubMed  CAS  Google Scholar 

  32. Stefanova I, Dorfman JR, Germain RN (2002) Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420:429–434

    Article  PubMed  CAS  Google Scholar 

  33. Hogquist KA, Starr TK, Jameson SC (2003) Receptor sensitivity: when T cells lose their sense of self. Curr Biol 13:R239–241

    Article  PubMed  CAS  Google Scholar 

  34. Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B (1997) Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276:2057–2062

    Article  PubMed  CAS  Google Scholar 

  35. Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, Fleming SA, Leiter EH, Shultz LD (1996) B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J Exp Med 184:2049–2053

    Article  PubMed  CAS  Google Scholar 

  36. Grusby MJ, Auchincloss H Jr, Lee R, Johnson RS, Spencer JP, Zijlstra M, Jaenisch R, Papaioannou VE, Glimcher LH (1993) Mice lacking major histocompatibility complex class I and class II molecules. Proc Natl Acad Sci USA 90:3913–3917

    Article  PubMed  CAS  Google Scholar 

  37. Modiano JF, Sun J, Lang J, Vacano G, Patterson D, Chan D, Franzusoff A, Gianani R, Meech SJ, Duke R, Bellgrau D (2004) Fas ligand-dependent suppression of autoimmunity via recruitment and subsequent termination of activated T cells. Clin Immunol 112:54–65

    Article  PubMed  CAS  Google Scholar 

  38. Kelemen K, Crawford ML, Gill RG, Hutton JC, Wegmann D (1999) Cellular immune response to phogrin in the NOD mouse: cloned T cells cause destruction of islet transplants. Diabetes 48:1529–1534

    Article  PubMed  CAS  Google Scholar 

  39. Bertram JS, Janik P (1980) Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett 11:63–73

    Article  PubMed  CAS  Google Scholar 

  40. Lang J, Bellgrau D (2002) A T cell functional phenotype common among autoimmune-prone rodent strains. Scand J Immunol 55:546–559

    Article  PubMed  CAS  Google Scholar 

  41. Leon RP, Hedlund T, Meech SJ, Li S, Schaack J, Hunger SP, Duke RC, DeGregori J (1998) Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci USA 95:13159–13164

    Article  PubMed  CAS  Google Scholar 

  42. Zhang H, Yang Y, Horton JL, Samoilova EB, Judge TA, Turka LA, Wilson JM, Chen Y (1997) Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J Clin Invest 100:1951–1957

    Article  PubMed  CAS  Google Scholar 

  43. Uchida J, Lee Y, Hasegawa M, Liang Y, Bradney A, Oliver JA, Bowen K, Steeber DA, Haas KM, Poe JC, Tedder TF (2004) Mouse CD20 expression and function. Int Immunol 16:119–129

    Article  PubMed  CAS  Google Scholar 

  44. Nesic D, Vukmanovic S (1998) MHC class I is required for peripheral accumulation of CD8+ thymic emigrants. J Immunol 160:3705–3712

    PubMed  CAS  Google Scholar 

  45. Nesic D, Santori FR, Vukmanovic S (2000) Alpha beta TCR+ cells are a minimal fraction of peripheral CD8+ pool in MHC class I-deficient mice. J Immunol 165:1896–1901

    PubMed  CAS  Google Scholar 

  46. Raulet DH (1994) MHC class I-deficient mice. Adv Immunol 55:381–421

    Article  PubMed  CAS  Google Scholar 

  47. Ge Q, Bai A, Shen CH, Eisen HN, Chen J (2003) CD4+ T-cell responses to self-peptide–MHC. Trends Immunol 24:186–189

    Article  PubMed  CAS  Google Scholar 

  48. King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265–277

    Article  PubMed  CAS  Google Scholar 

  49. Modiano JF, Lamerato-Kozicki AR, Jubala CM, Coffey D, Borakove M, Schaack J, Bellgrau D (2004) Fas ligand gene transfer for cancer therapy. Cancer Ther 2:561–570

    Google Scholar 

  50. Lee SH, Bar-Haim E, Goldberger O, Reich-Zeliger S, Vadai E, Tzehoval E, Eisenbach L (2004) Expression of FasL by tumor cells does not abrogate anti-tumor CTL function. Immunol Lett 91:119–126

    Article  PubMed  CAS  Google Scholar 

  51. Shimizu M, Fontana A, Takeda Y, Yagita H, Yoshimoto T, Matsuzawa A (1999) Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)-transfected neuroblastoma neuro-2a cells. J Immunol 162:7350–7357

    PubMed  CAS  Google Scholar 

  52. Prins RM, Incardona F, Lau R, Lee P, Claus S, Zhang W, Black KL, Wheeler CJ (2004) Characterization of defective CD4−CD8− T cells in murine tumors generated independent of antigen specificity. J Immunol 172:1602–1611

    PubMed  CAS  Google Scholar 

  53. Denkers EY, Gazzinelli RT, Martin D, Sher A (1993) Emergence of NK1.1+ cells as effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J Exp Med 178:1465–1472

    Article  PubMed  CAS  Google Scholar 

  54. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, Smyth MJ (2002) Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat Immunol 3:83–90

    Article  PubMed  CAS  Google Scholar 

  55. Smyth MJ, Snook MB (1999) Perforin-dependent cytolytic responses in beta2-microglobulin-deficient mice. Cell Immunol 196:51–59

    Article  PubMed  CAS  Google Scholar 

  56. Chen A, Liu S, Park D, Kang Y, Zheng G (2007) Depleting intratumoral CD4+CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Res 67:1291–1298

    Article  PubMed  CAS  Google Scholar 

  57. Fritzsching B, Oberle N, Eberhardt N, Quick S, Haas J, Wildemann B, Krammer PH, Suri-Payer E (2005) In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol 175:32–36

    PubMed  CAS  Google Scholar 

  58. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21:267–277

    Article  PubMed  CAS  Google Scholar 

  59. Lang JA, Kominski D, Bellgrau D, Scheinman RI (2004) Partial activation precedes apoptotic death in T cells harboring an IAN gene mutation. Eur J Immunol 34:2396–2406

    Article  PubMed  CAS  Google Scholar 

  60. Modiano JF, Johnson LDS, Bellgrau D (2008) Negative regulators in homeostasis of naive peripheral T cells. Immunol Res. doi:10.1007/s12026-008-8017-1

  61. Modiano JF, Mayor J, Ball C, Fuentes MK, Linthicum DS (2000) Cdk4 expression and activity are required for cytokine responsiveness in T cells. J Immunol 165:6693–6702

    PubMed  CAS  Google Scholar 

  62. Kieper WC, Jameson SC (1999) Homeostatic expansion and phenotypic conversion of naive T cells in response to self-peptide/MHC ligands. Proc Natl Acad Sci USA 96:13306–13311

    Article  PubMed  CAS  Google Scholar 

  63. Medema JP, Borst J (1999) T cell signaling: a decision of life and death. Hum Immunol 60:403–411

    Article  PubMed  CAS  Google Scholar 

  64. Di Rosa F, Ramaswamy S, Ridge JP, Matzinger P (1999) On the lifespan of virgin T lymphocytes. J Immunol 163:1253–1257

    PubMed  CAS  Google Scholar 

  65. Fischer UB, Jacovetty EL, Medeiros RB, Goudy BD, Zell T, Swanson JB, Lorenz E, Shimizu Y, Miller MJ, Khoruts A, Ingulli E (2007) MHC class II deprivation impairs CD4 T cell motility and responsiveness to antigen-bearing dendritic cells in vivo. Proc Natl Acad Sci USA 104:7181–7186

    Article  PubMed  CAS  Google Scholar 

  66. Hua X, Thompson CB (2001) Quiescent T cells: actively maintaining inactivity. Nat Immunol 2:1097–1098

    Article  PubMed  CAS  Google Scholar 

  67. Massague J, Weinberg RA (1992) Negative regulators of growth. Curr Opin Genet Dev 2:28–32

    Article  PubMed  CAS  Google Scholar 

  68. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    Article  PubMed  CAS  Google Scholar 

  69. Quelle DE, Ashmun RA, Hannon GJ, Rehberger PA, Trono D, Richter KH, Walker C, Beach D, Sherr CJ, Serrano M (1995) Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11:635–645

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Susan Fosmire, Dr. Angela Pierce, Dr. Ashley Frazer-Abel, and Dr. John Wojcieszyn for assistance with experiments, Dr. Tadashi Yamamoto for the Tob1 knockout mice, and Drs. Anne Avery, Kristin Hogquist, and Stephen Jameson for review of the manuscript and helpful discussions. This work was supported by a grant from The Cancer League of Colorado, Inc., by grants R21DK63410, P30CA46934, R01DK58722, and PO1HD38129 from the National Institutes of Health, by a grant from the Monfort Family Foundation, and by discretionary funds from the Integrated Department of Immunology and the University of Colorado Cancer Center. ARL was the recipient of a post-doctoral fellowship from the University of Colorado Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donald Bellgrau or Jaime F. Modiano.

Additional information

Donald Bellgrau and Jaime F. Modiano contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jubala, C.M., Lamerato-Kozicki, A.R., Borakove, M. et al. MHC-dependent desensitization of intrinsic anti-self reactivity. Cancer Immunol Immunother 58, 171–185 (2009). https://doi.org/10.1007/s00262-008-0535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0535-0

Keywords

Navigation