Skip to main content

Advertisement

Log in

Engineered T cells for cancer therapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

It is now well established that the immune system can control and eliminate cancer cells. Adoptive T cell transfer has the potential to overcome the significant limitations associated with vaccine-based strategies in patients who are often immune compromised. Application of the emerging discipline of synthetic biology to cancer, which combines elements of genetic engineering and molecular biology to create new biological structures with enhanced functionalities, is the subject of this focused research review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

  2. Ho WY, Blattman JN, Dossett ML, Yee C, Greenberg PD (2003) Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 3:431–437

    Article  CAS  PubMed  Google Scholar 

  3. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39:49–60

    Article  CAS  PubMed  Google Scholar 

  4. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR et al (2009) Gene therapy with human and mouse T cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Eshhar Z, Waks T, Bendavid A, Schindler DG (2001) Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 248:67–76

    Article  CAS  PubMed  Google Scholar 

  7. Barrett DM, Singh N, Porter DL, Grupp SA, June CH (2014) Chimeric antigen receptor therapy for cancer. Annu Rev Med 65:333–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK (2012) Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol 42:3174–3179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Simpson A, Caballero O, Jungbluth A, Chen Y, Old L (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Zheng Z, Robbins PF, Khong HT, Rosenberg SA, Morgan RA (2005) Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J Immunol 174:4415–4423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917

    Article  PubMed Central  PubMed  Google Scholar 

  12. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G et al (2013) Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-Directed T cells. Sci Transl Med 5(197):197ra103. doi:10.1126/scitranslmed.3006034

  13. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ et al (2013) Cardiovascular toxicity and titin cross-reactivity of affinity enhanced T cells in myeloma and melanoma. Blood 122:863–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM et al (2013) Cancer regression and neurological toxicity Following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Irving BA, Weiss A (1991) The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64:891–901

    Article  CAS  PubMed  Google Scholar 

  16. Romeo C, Seed B (1991) Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64:1037–1046

    Article  CAS  PubMed  Google Scholar 

  17. Letourneur F, Klausner RD (1991) T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc Natl Acad Sci USA 88:8905–8909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mitsuyasu RT, Anton P, Deeks SG, Scadden DT, Connick E, Downs MT, Bakker A, Roberts MR, June CH, Jalali S et al (2000) Prolonged survival and tissue trafficking following adoptive transfer of CD4 z gene-modified autologous CD4+ and CD8+ T cells in HIV-infected subjects. Blood 96:785–793

    CAS  PubMed  Google Scholar 

  19. Scholler J, Brady T, Binder-Scholl G, Hwang W-T, Plesa G, Hege K, Vogel A, Kalos M, Riley J, Deeks S et al (2012) Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 4(132):132Ra153. doi:10.1126/scitranslmed.3003761

  20. McGuinness RP, Ge Y, Patel SD, Kashmiri SV, Lee HS, Hand PH, Schlom J, Finer MH, McArthur JG (1999) Anti-tumor activity of human T cells expressing the CC49-zeta chimeric immune receptor. Hum Gene Ther 10:165–173

    Article  CAS  PubMed  Google Scholar 

  21. Finney HM, Lawson ADG, Bebbington CR, Weir ANC (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 161:2791–2797

    CAS  PubMed  Google Scholar 

  22. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12:6106–6115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22

    Article  PubMed  Google Scholar 

  24. Kochenderfer J, Wilson W, Janik J, Dudley M, Stetler-Stevenson M, Feldman S, Maric I, Raffeld M, Nathan D, Lanier B et al (2010) Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically-engineered to recognize CD19. Blood 116:4099–4102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells expressing chimeric receptors establish memory and potent antitumor effects in patients with advanced leukemia. Sci Transl Med 3(95):95ra73. doi:10.1126/scitranslmed.3002842

  26. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter D, Rheingold S, Teachey D, Chew A, Hauck B, Wright J et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra138. doi:10.1126/scitranslmed.3005930

  29. Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol Today 18:450–454

    Article  CAS  PubMed  Google Scholar 

  30. Brentjens R, Rivière I, Park J, Davila M, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:4817–4828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP, Mei Z et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121:1822–1825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Morgan R, Yang J, Kitano M, Dudley M, Laurencot C, Rosenberg S (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jena B, Dotti G, Cooper L (2010) Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 116:1035–1044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Maus MV, Grupp SA, Porter DL, June CH (2014) Antibody modified T cells: CARs take the front seat for hematologic malignancies. Blood 123:2625–2635

    Article  CAS  PubMed  Google Scholar 

  35. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, Wu J, Heslop HE, Rooney CM, Brenner MK et al (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108:3890–3897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Barrett DM, Teachey DT, Grupp SA (2014) Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr 26:43–49

    Article  CAS  PubMed  Google Scholar 

  37. Tang Y, Xu X, Song H, Yang S, Shi S, Wei J, Pan B, Zhao F, Liao C, Luo C (2008) Early diagnostic and prognostic significance of a specific Th1/Th2 cytokine pattern in children with haemophagocytic syndrome. Br J Haematol 143:84–91

    Article  CAS  PubMed  Google Scholar 

  38. Sieni E, Cetica V, Piccin A, Gherlinzoni F, Sasso FC, Rabusin M, Attard L, Bosi A, Pende D, Moretta L et al (2012) Familial hemophagocytic lymphohistiocytosis may present during adulthood: clinical and genetic features of a small series. PLoS One 7:e44649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra225. doi:10.1126/scitranslmed.3008226

  41. Saha B, Harlan DM, Lee KP, June CH, Abe R (1996) Protection against lethal toxic shock by targeted disruption of the CD28 gene. J Exp Med 183:2675–2680

    Article  CAS  PubMed  Google Scholar 

  42. Klinger M, Brandl C, Zugmaier G, Hijazi Y, Bargou RC, Topp MS, Gokbuget N, Neumann S, Goebeler M, Viardot A et al (2012) Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119:6226–6233

    Article  CAS  PubMed  Google Scholar 

  43. Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, Nichols KE, Suppa EK, Kalos M, Berg RA et al (2013) Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine directed therapy. Blood 121:5154–5157

    Article  CAS  PubMed  Google Scholar 

  44. Davis MM, Krogsgaard M, Huse M, Huppa J, Lillemeier BF, Li QJ (2007) T cells as a self-referential, sensory organ. Annu Rev Immunol 25:681–695

    Article  CAS  PubMed  Google Scholar 

  45. Stone JD, Aggen DH, Schietinger A, Schreiber H, Kranz DM (2012) A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell engagers (BiTEs). Oncoimmunology 1:863–873

    Article  PubMed Central  PubMed  Google Scholar 

  46. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  47. Vitale M, Pelusi G, Taroni B, Gobbi G, Micheloni C, Rezzani R, Donato F, Wang X, Ferrone S (2005) HLA class I antigen down-regulation in primary ovary carcinoma lesions: association with disease stage. Clin Cancer Res 11:67–72

    CAS  PubMed  Google Scholar 

  48. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM et al (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 106:3360–3365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bendle GM, Linnemann C, Bies L, Song JY, Schumacher TN (2013) Blockade of TGF-beta signaling greatly enhances the efficacy of TCR gene therapy of cancer. J Immunol 191:3232–3239

    Article  CAS  PubMed  Google Scholar 

  50. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2:112–120

    Article  CAS  PubMed  Google Scholar 

  51. John LB, Devaud C, Duong CM, Yong C, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636–5646

    Article  CAS  PubMed  Google Scholar 

  52. Levine BL, June CH (2013) Perspective: assembly line immunotherapy. Nature 498:S17

    Article  CAS  PubMed  Google Scholar 

  53. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, Chu V, Paschon DE, Zhang L, Kuball J et al (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18:807–815

    Article  CAS  PubMed  Google Scholar 

  54. Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, Crossland DL, Huls H, Littman N, Zhang Z et al (2013) Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122:1341–1349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare sponsored research support from Novartis.

Conflict of interest

The authors have intellectual property in this field that is owned by the University of Pennsylvania, and licensed by Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl H. June.

Additional information

This paper is a Focussed Research Review based on a presentation given at the 19th Danish Cancer Society Symposium in Copenhagen, Denmark, 23rd–25th September 2013, on the topic “Immunotherapy of Cancer—Present Status and Future Promise”. It is part of a CII series of Focussed Research Reviews and meeting report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

June, C.H., Maus, M.V., Plesa, G. et al. Engineered T cells for cancer therapy. Cancer Immunol Immunother 63, 969–975 (2014). https://doi.org/10.1007/s00262-014-1568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1568-1

Keywords

Navigation