Skip to main content

Advertisement

Log in

Phase I study to evaluate toxicity and feasibility of intratumoral injection of α-gal glycolipids in patients with advanced melanoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Effective uptake of tumor cell-derived antigens by antigen-presenting cells is achieved pre-clinically by in situ labeling of tumor with α-gal glycolipids that bind the naturally occurring anti-Gal antibody. We evaluated toxicity and feasibility of intratumoral injections of α-gal glycolipids as an autologous tumor antigen-targeted immunotherapy in melanoma patients (pts). Pts with unresectable metastatic melanoma, at least one cutaneous, subcutaneous, or palpable lymph node metastasis, and serum anti-Gal titer ≥1:50 were eligible for two intratumoral α-gal glycolipid injections given 4 weeks apart (cohort I: 0.1 mg/injection; cohort II: 1.0 mg/injection; cohort III: 10 mg/injection). Monitoring included blood for clinical, autoimmune, and immunological analyses and core tumor biopsies. Treatment outcome was determined 8 weeks after the first α-gal glycolipid injection. Nine pts received two intratumoral injections of α-gal glycolipids (3 pts/cohort). Injection-site toxicity was mild, and no systemic toxicity or autoimmunity could be attributed to the therapy. Two pts had stable disease by RECIST lasting 8 and 7 months. Tumor nodule biopsies revealed minimal to no change in inflammatory infiltrate between pre- and post-treatment biopsies except for 1 pt (cohort III) with a post-treatment inflammatory infiltrate. Two and four weeks post-injection, treated nodules in 5 of 9 pts exhibited tumor cell necrosis without neutrophilic or lymphocytic inflammatory response. Non-treated tumor nodules in 2 of 4 evaluable pts also showed necrosis. Repeated intratumoral injections of α-gal glycolipids are well tolerated, and tumor necrosis was seen in some tumor nodule biopsies after tumor injection with α-gal glycolipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ANA:

Antinuclear antibodies

DLT:

Dose-limiting toxicity

ECOG:

Eastern Cooperative Oncology Group

ESR:

Erythrocyte sedimentation rate

MFI:

Median fluorescence intensity

MTD:

Maximum tolerated dose

PD:

Progressive disease

pt:

Patient

SD:

Stable disease

ULN:

Upper limit of normal

UW:

University of Wisconsin

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. doi:10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Callahan MK, Wolchok JD (2013) At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol 94:41–53. doi:10.1189/jlb.1212631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McArthur GA, Ribas A (2013) Targeting oncogenic drivers and the immune system in melanoma. J Clin Oncol 31:499–506. doi:10.1200/JCO.2012.45.5568

    Article  CAS  PubMed  Google Scholar 

  4. Robert C, Karaszewska B, Schachter J et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39. doi:10.1056/NEJMoa1412690

    Article  PubMed  Google Scholar 

  5. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34. doi:10.1056/NEJMoa1504030

    Article  PubMed  Google Scholar 

  6. van Rooij N, van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:e439–e442. doi:10.1200/JCO.2012.47.7521

    Article  PubMed  Google Scholar 

  7. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. doi:10.1126/science.aaa8172

    Article  CAS  PubMed  Google Scholar 

  8. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. doi:10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  10. Berger MF, Hodis E, Heffernan TP et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485:502–506. doi:10.1038/nature11071

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu C, Zhang J, Nagahawatte P et al (2015) The genomic landscape of childhood and adolescent melanoma. J Invest Dermatol 135:816–823. doi:10.1038/jid.2014.425

    Article  CAS  PubMed  Google Scholar 

  12. Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873. doi:10.1038/nature09208

    Article  CAS  PubMed  Google Scholar 

  13. McGranahan N, Furness AJ, Rosenthal R et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Sci 351:1463–1469. doi:10.1126/science.aaf1490

    Article  CAS  Google Scholar 

  14. Galili U, Wigglesworth K, Abdel-Motal UM (2007) Intratumoral injection of alpha-gal glycolipids induces xenograft-like destruction and conversion of lesions into endogenous vaccines. J Immunol 178:4676–4687

    Article  CAS  PubMed  Google Scholar 

  15. Abdel-Motal UM, Wigglesworth K, Galili U (2009) Intratumoral injection of alpha-gal glycolipids induces a protective anti-tumor T cell response which overcomes Treg activity. Cancer Immunol Immunother 58:1545–1556. doi:10.1007/s00262-009-0662-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galili U (2013) In situ conversion of tumors into autologous tumor-associated antigen vaccines by intratumoral injection of alpha-gal glycolipids. Oncoimmunology 2:e22449. doi:10.4161/onci.22449

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galili U, Rachmilewitz EA, Peleg A, Flechner I (1984) A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med 160:1519–1531

    Article  CAS  PubMed  Google Scholar 

  18. Galili U, Macher BA, Buehler J, Shohet SB (1985) Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha(1–3)-linked galactose residues. J Exp Med 162:573–582

    Article  CAS  PubMed  Google Scholar 

  19. Buonomano R, Tinguely C, Rieben R, Mohacsi PJ, Nydegger UE (1999) Quantitation and characterization of anti-Galalpha1-3Gal antibodies in sera of 200 healthy persons. Xenotransplantation 6:173–180

    Article  CAS  PubMed  Google Scholar 

  20. Hamanova M, Zdrazilova Dubska L, Valik D, Lokaj J (2014) Natural antibodies against alpha(1,3) galactosyl epitope in the serum of cancer patients. Epidemiol Mikrobiol Imunol 63:130–133 (Article in Czech)

    CAS  PubMed  Google Scholar 

  21. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA (1987) Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1–3Gal epitope in primates. Proc Natl Acad Sci USA 84:1369–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA (1988) Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263:17755–17762

    CAS  PubMed  Google Scholar 

  23. Teranishi K, Manez R, Awwad M, Cooper DK (2002) Anti-Gal alpha 1–3Gal IgM and IgG antibody levels in sera of humans and old world non-human primates. Xenotransplantation 9:148–154

    Article  PubMed  Google Scholar 

  24. Stone KR, Abdel-Motal UM, Walgenbach AW, Turek TJ, Galili U (2007) Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation. Transplantation 83:211–219. doi:10.1097/01.tp.0000250598.29377.13

    Article  CAS  PubMed  Google Scholar 

  25. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  26. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  27. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800. doi:10.1038/nm730

    Article  CAS  PubMed  Google Scholar 

  28. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 15 March 2016

  29. Whalen GF, Sullivan M, Piperdi B, Wasseff W, Galili U (2012) Cancer immunotherapy by intratumoral injection of alpha-gal glycolipids. Anticancer Res 32:3861–3868

    CAS  PubMed  Google Scholar 

  30. Schaefer C, Butterfield LH, Lee S, Kim GG, Visus C, Albers A, Kirkwood JM, Whiteside TL (2012) Function but not phenotype of melanoma peptide-specific CD8(+) T cells correlate with survival in a multiepitope peptide vaccine trial (ECOG 1696). Int J Cancer 131:874–884. doi:10.1002/ijc.26481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Appay V, Jandus C, Voelter V et al (2006) New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J Immunol 177:1670–1678. doi:10.4049/jimmunol.177.3.1670

    Article  CAS  PubMed  Google Scholar 

  32. Galili U, LaTemple DC (1997) Natural anti-Gal antibody as a universal augmenter of autologous tumor vaccine immunogenicity. Immunol Today 18:281–285

    Article  CAS  PubMed  Google Scholar 

  33. Abdel-Motal U, Wang S, Lu S, Wigglesworth K, Galili U (2006) Increased immunogenicity of human immunodeficiency virus gp120 engineered to express Galalpha1-3Galbeta1-4GlcNAc-R epitopes. J Virol 80:6943–6951. doi:10.1128/JVI.00310-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdel-Motal UM, Guay HM, Wigglesworth K, Welsh RM, Galili U (2007) Immunogenicity of influenza virus vaccine is increased by anti-gal-mediated targeting to antigen-presenting cells. J Virol 81:9131–9141. doi:10.1128/JVI.00647-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LaTemple DC, Abrams JT, Zhang SY, Galili U (1999) Increased immunogenicity of tumor vaccines complexed with anti-Gal: studies in knockout mice for alpha1,3galactosyltransferase. Cancer Res 59:3417–3423

    CAS  PubMed  Google Scholar 

  36. Rossi GR, Mautino MR, Unfer RC, Seregina TM, Vahanian N, Link CJ (2005) Effective treatment of preexisting melanoma with whole cell vaccines expressing alpha(1,3)-galactosyl epitopes. Cancer Res 65:10555–10561. doi:10.1158/0008-5472.CAN-05-0627

    Article  CAS  PubMed  Google Scholar 

  37. Deguchi T, Tanemura M, Miyoshi E et al (2010) Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express alpha-gal epitopes: a novel approach to immunotherapy in pancreatic cancer. Cancer Res 70:5259–5269. doi:10.1158/0008-5472.CAN-09-4313

    Article  CAS  PubMed  Google Scholar 

  38. Qiu Y, Yun MM, Xu MB, Wang YZ, Yun S (2013) Pancreatic carcinoma-specific immunotherapy using synthesised alpha-galactosyl epitope-activated immune responders: findings from a pilot study. Int J Clin Oncol 18:657–665. doi:10.1007/s10147-012-0434-4

    Article  CAS  PubMed  Google Scholar 

  39. Qiu Y, Xu MB, Yun MM, Wang YZ, Zhang RM, Meng XK, Ou-Yang XH, Yun S (2011) Hepatocellular carcinoma-specific immunotherapy with synthesized alpha1,3-galactosyl epitope-pulsed dendritic cells and cytokine-induced killer cells. World J Gastroenterol 17:5260–5266. doi:10.3748/wjg.v17.i48.5260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212. doi:10.1016/j.coi.2011.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Borakove M, Manthey E, Borges VF, McCarter MD (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother 62:1711–1722. doi:10.1007/s00262-013-1475-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jordan KR, Borges E, McCarter MD (2014) Immunosuppressive myeloid-derived suppressor cells expressing PDL1 are increased in human melanoma tumor tissue. Cancer Res 74(19 Suppl):1671. doi:10.1158/1538-7445.AM2014-1671

    Article  Google Scholar 

  43. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. doi:10.1146/annurev.immunol.26.021607.090331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael D. Macklin for technical assistance and Laddie Johnson for assistance with manuscript preparation. The authors thank the UW Translational Research Initiatives in Pathology laboratory, in part supported by the UW Department of Pathology and Laboratory Medicine and the UW Carbone Cancer Center, for use of its facilities and services. We also thank the nurses on the UW Clinical Research Unit for outstanding nursing care and for clinical trial support.

Financial support

Support was provided by NIH Grants CA130295, P30 CA014520 from the National Cancer Institute, by resources at the William S. Middleton Memorial Veterans Hospital, Madison, WI, and by the Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000427. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the views of the Department of Veterans Affairs or the US Government. Additional support was provided by Ann’s Hope Foundation, the Tim Eagle Memorial, the Jay Van Sloan Memorial from the Steve Leuthold Family, the Gretchen and Andrew Dawes Melanoma Research Fund, and Agalimmune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Albertini.

Ethics declarations

Conflict of interest

The authors have the following financial or other conflicts of interests to disclose related to this publication: Uri Galili is the inventor of this immunotherapy and is a consultant to Agalimmune Inc. which further develops cancer immunotherapy with α-gal glycolipids. All other authors declare no financial or other conflicts of interests related to this publication.

Statement of human rights

The UW Human Subjects Committee and the FDA approved this study (IND 12946). Informed consent was obtained from all individual participants included in the study and all individual participants registered with the Biostatistics Registration Desk prior to treatment. The clinical trial registration number for this study is: NCT00668512. All procedures performed in studies involving human participants were in accordance with ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertini, M.R., Ranheim, E.A., Zuleger, C.L. et al. Phase I study to evaluate toxicity and feasibility of intratumoral injection of α-gal glycolipids in patients with advanced melanoma. Cancer Immunol Immunother 65, 897–907 (2016). https://doi.org/10.1007/s00262-016-1846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1846-1

Keywords

Navigation