Skip to main content

Advertisement

Log in

Prognostic value of soluble programmed cell death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) for hepatocellular carcinoma: a systematic review and meta-analysis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Preliminary studies have suggested that soluble programmed death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) have prognostic implications in many malignant tumors. However, the correlation between sPD-1/sPD-L1 level and prognosis of hepatocellular carcinoma (HCC) is still unclear.

Methods

We searched several electronic databases from database inception to October 7, 2021. Meta-analyses were performed separately for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), time to progression (TTP), and tumor-free survival (TFS). Random effects were introduced to this meta-analysis. The correlation between sPD-1/sPD-L1 level and prognosis was evaluated using hazard ratios (HRs) with 95% confidence intervals (95%CIs).

Results

A total of 11 studies (1291 patients) were incorporated into this meta-analysis, including seven on sPD-L1, two on sPD-1, and two about both factors. The pooled results showed that high sPD-L1 level was associated with worse OS (HR = 2.46, 95%CI 1.74–3.49, P < 0.001; I2 = 31.4, P = 0.177) and poorer DFS/RFS/TTP/TFS of patients with HCC (HR = 2.22, 95%CI 1.47–3.35, P < 0.001; I2 = 66.1, P = 0.011), irrespective of method of detection, study type, treatment, cut-off value and follow-up time. In contrast, the level of sPD-1 was not correlated to the OS (HR = 1.19, 95%CI 0.55–2.56, P = 0.657) and DFS/TFS of patients with HCC (HR = 0.94, 95%CI 0.36–2.49, P = 0.906).

Conclusion

sPD-L1 rather than sPD-1 could be a good predictor for recurrence and survival after treatment for HCC. More high-quality prospective studies are warranted to assess the prognostic value of sPD-1 or sPD-L1 for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and material analyzed during this study are included in this article.

Abbreviations

APCs:

Antigen-presenting cells

CI:

Confidence interval

CTLA-4:

Cytotoxic T lymphocyte antigen 4

DCs:

Dendritic cells

DFS:

Disease-free survival

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular-signal regulated kinase

GM-CDF:

Granulocyte–macrophage colony-stimulating factor

HR:

Hazard ratio

HCC:

Hepatocellular carcinoma

ICIs:

Immune checkpoint inhibitors

IFN:

Interferon

IL:

Interleukin

ITSM:

Immunoreceptor tyrosine-based switch motif

NK cells:

Natural killer cells

NKT cells:

Natural killer T cells

NOS:

Newcastle–ottawa scale

OS:

Overall survival

PD-1:

Programmed cell death-1

PD-L1:

Programmed cell death ligand-1

PLCγ2:

Phospholipase C-γ2

PI3K:

Phosphatidylinositol 3 kinase

RFS:

Recurrence-free survival

sPD-1:

Soluble programmed cell death-1

sPD-L1:

Soluble programmed cell death ligand-1

TACE:

Transcatheter arterial chemoembolization

TFS:

Tumor-free survival

TTP:

Time to progression

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M et al (2016) Hepatocellular carcinoma Nat Rev Dis Primers 2:16018. https://doi.org/10.1038/nrdp.2016.18

    Article  PubMed  Google Scholar 

  3. Ruf B, Heinrich B, Greten TF (2021) Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol 18:112–127. https://doi.org/10.1038/s41423-020-00572-w

    Article  CAS  PubMed  Google Scholar 

  4. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T et al (2017) Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544:250–254. https://doi.org/10.1038/nature21724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shigeta K, Datta M, Hato T, Kitahara S, Chen IX, Matsui A et al (2020) Dual Programmed Death Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Blockade Promotes Vascular Normalization and Enhances Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology 71:1247–1261. https://doi.org/10.1002/hep.30889

    Article  CAS  PubMed  Google Scholar 

  6. Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity 44:955–972. https://doi.org/10.1016/j.immuni.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18:153–167. https://doi.org/10.1038/nri.2017.108

    Article  CAS  PubMed  Google Scholar 

  8. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and Function of the PD-L1 Checkpoint. Immunity 48:434–452. https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bailly C, Thuru X, Quesnel B (2021) Soluble Programmed Death Ligand-1 (sPD-L1): A Pool of Circulating Proteins Implicated in Health and Diseases. Cancers (Basel). https://doi.org/10.3390/cancers13123034

    Article  Google Scholar 

  10. Liu Z, Lin Y, Zhang J, Zhang Y, Li Y, Liu Z et al (2019) Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. J Exp Clin Cancer Res 38:447. https://doi.org/10.1186/s13046-019-1412-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z et al (2019) The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front Immunol 10:2298. https://doi.org/10.3389/fimmu.2019.02298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276. https://doi.org/10.1016/j.it.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu D, Ao X, Yang Y, Chen Z, Xu X (2018) Soluble immune checkpoints in cancer: production, function and biological significance. J Immunother Cancer 6:132. https://doi.org/10.1186/s40425-018-0449-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khan M, Zhao Z, Arooj S, Fu Y, Liao G (2020) Soluble PD-1: Predictive, Prognostic, and Therapeutic Value for Cancer Immunotherapy. Front Immunol 11:587460. https://doi.org/10.3389/fimmu.2020.587460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Romero Y, Wise R, Zolkiewska A (2020) Proteolytic processing of PD-L1 by ADAM proteases in breast cancer cells. Cancer Immunol Immunother 69:43–55. https://doi.org/10.1007/s00262-019-02437-2

    Article  CAS  PubMed  Google Scholar 

  16. Orme JJ, Jazieh KA, Xie T, Harrington S, Liu X, Ball M et al (2020) ADAM10 and ADAM17 cleave PD-L1 to mediate PD-(L)1 inhibitor resistance. Oncoimmunology 9:1744980. https://doi.org/10.1080/2162402x.2020.1744980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finkelmeier F, Canli Ö, Tal A, Pleli T, Trojan J, Schmidt M et al (2016) High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur J Cancer 59:152–159. https://doi.org/10.1016/j.ejca.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Mocan T, Ilies M, Nenu I, Craciun R, Horhat A, Susa R et al (2021) Serum levels of soluble programmed death-ligand 1 (sPD-L1): A possible biomarker in predicting post-treatment outcomes in patients with early hepatocellular carcinoma. Int Immunopharmacol 94:107467. https://doi.org/10.1016/j.intimp.2021.107467

    Article  CAS  PubMed  Google Scholar 

  19. Chang B, Huang T, Wei H, Shen L, Zhu D, He W et al (2019) The correlation and prognostic value of serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death-ligand 1 (sPD-L1) in patients with hepatocellular carcinoma. Cancer Immunol Immunother 68:353–363. https://doi.org/10.1007/s00262-018-2271-4

    Article  CAS  PubMed  Google Scholar 

  20. Itoh S, Yoshizumi T, Yugawa K, Imai D, Yoshiya S, Takeishi K et al (2020) Impact of Immune Response on Outcomes in Hepatocellular Carcinoma: Association With Vascular Formation. Hepatology 72:1987–1999. https://doi.org/10.1002/hep.31206

    Article  CAS  PubMed  Google Scholar 

  21. Sideras K, de Man RA, Harrington SM, Polak WG, Zhou G, Schutz HM et al (2019) Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels. Sci Rep 9:10677. https://doi.org/10.1038/s41598-019-47235-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647. https://doi.org/10.1136/bmj.g7647

    Article  PubMed  Google Scholar 

  23. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  24. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16. https://doi.org/10.1186/1745-6215-8-16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ma XL, Qu XD, Yang WJ, Wang BL, Shen MN, Zhou Y et al (2020) Elevated soluble programmed death-ligand 1 levels indicate immunosuppression and poor prognosis in hepatocellular carcinoma patients undergoing transcatheter arterial chemoembolization. Clin Chim Acta 511:67–74. https://doi.org/10.1016/j.cca.2020.09.026

    Article  CAS  PubMed  Google Scholar 

  26. Han X, Gu YK, Li SL, Chen H, Chen MS, Cai QQ et al (2019) Pre-treatment serum levels of soluble programmed cell death-ligand 1 predict prognosis in patients with hepatitis B-related hepatocellular carcinoma. J Cancer Res Clin Oncol 145:303–312. https://doi.org/10.1007/s00432-018-2758-6

    Article  CAS  PubMed  Google Scholar 

  27. Li N, Zhou Z, Li F, Sang J, Han Q, Lv Y et al (2017) Circulating soluble programmed death-1 levels may differentiate immune-tolerant phase from other phases and hepatocellular carcinoma from other clinical diseases in chronic hepatitis B virus infection. Oncotarget 8:46020–46033. https://doi.org/10.18632/oncotarget.17546

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zeng Z, Shi F, Zhou L, Zhang MN, Chen Y, Chang XJ et al (2011) Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS ONE 6:e23621. https://doi.org/10.1371/journal.pone.0023621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Na BG, Kim YK, Hwang S, Lee KJ, Park GC, Ahn CS et al (2021) Absence of association between pretransplant serum soluble programmed death protein-1 level and prognosis following living donor liver transplantation in patients with hepatocellular carcinoma. Medicine (Baltimore) 100:e25640. https://doi.org/10.1097/md.0000000000025640

    Article  CAS  Google Scholar 

  30. Kim HJ, Park S, Kim KJ, Seong J (2018) Clinical significance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular carcinoma patients treated with radiotherapy. Radiother Oncol 129:130–135. https://doi.org/10.1016/j.radonc.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  31. El-Gebaly F, Abou-Saif S, Elkadeem M, Helmy A, Abd-Elsalam S, Yousef M et al (2019) Study of Serum Soluble Programmed Death Ligand 1 as a Prognostic Factor in Hepatocellular Carcinoma in Egyptian Patients. Curr Cancer Drug Targets 19:896–905. https://doi.org/10.2174/1568009619666190718141647

    Article  CAS  PubMed  Google Scholar 

  32. Cox NJ (2013) TRIMMEAN: Stata module for trimmed means as descriptive or inferential statistics. Statistical Software Components.

  33. Li X, Zheng Y, Yue F (2021) Prognostic Value of Soluble Programmed Cell Death Ligand-1 (sPD-L1) in Various Cancers: A Meta-analysis. Target Oncol 16:13–26. https://doi.org/10.1007/s11523-020-00763-5

    Article  PubMed  Google Scholar 

  34. Ding Y, Sun C, Li J, Hu L, Li M, Liu J et al (2017) The Prognostic Significance of Soluble Programmed Death Ligand 1 Expression in Cancers: A Systematic Review and Meta-analysis. Scand J Immunol 86:361–367. https://doi.org/10.1111/sji.12596

    Article  CAS  PubMed  Google Scholar 

  35. Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF et al (2021) Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 53:961–978. https://doi.org/10.1093/abbs/gmab077

    Article  CAS  Google Scholar 

  36. Ugurel S, Schadendorf D, Horny K, Sucker A, Schramm S, Utikal J et al (2020) Elevated baseline serum PD-1 or PD-L1 predicts poor outcome of PD-1 inhibition therapy in metastatic melanoma. Ann Oncol 31:144–152. https://doi.org/10.1016/j.annonc.2019.09.005

    Article  CAS  PubMed  Google Scholar 

  37. Zhou J, Mahoney KM, Giobbie-Hurder A, Zhao F, Lee S, Liao X et al (2017) Soluble PD-L1 as a Biomarker in Malignant Melanoma Treated with Checkpoint Blockade. Cancer Immunol Res 5:480–492. https://doi.org/10.1158/2326-6066.Cir-16-0329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ha H, Nam AR, Bang JH, Park JE, Kim TY, Lee KH et al (2016) Soluble programmed death-ligand 1 (sPDL1) and neutrophil-to-lymphocyte ratio (NLR) predicts survival in advanced biliary tract cancer patients treated with palliative chemotherapy. Oncotarget 7:76604–76612. https://doi.org/10.18632/oncotarget.12810

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sorensen SF, Demuth C, Weber B, Sorensen BS, Meldgaard P (2016) Increase in soluble PD-1 is associated with prolonged survival in patients with advanced EGFR-mutated non-small cell lung cancer treated with erlotinib. Lung Cancer 100:77–84. https://doi.org/10.1016/j.lungcan.2016.08.001

    Article  PubMed  Google Scholar 

  40. Li M, Zhao L, Zhou X, Zhang K, Yin P, Liu S et al (2021) Detection of carcinoma in serous effusions: a review. Am J Cancer Res 11:43–60

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jalali S, Price-Troska T, Paludo J, Villasboas J, Kim HJ, Yang ZZ et al (2018) Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Adv 2:1985–1997. https://doi.org/10.1182/bloodadvances.2018021113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rich NE, Hester C, Odewole M, Murphy CC, Parikh ND, Marrero JA et al (2019) Racial and Ethnic Differences in Presentation and Outcomes of Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 17:551–9.e1. https://doi.org/10.1016/j.cgh.2018.05.039

    Article  PubMed  Google Scholar 

  43. Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O’Shea MA et al (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 181:6738–6746. https://doi.org/10.4049/jimmunol.181.10.6738

    Article  CAS  PubMed  Google Scholar 

  44. Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T et al (2011) IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186:2772–2779. https://doi.org/10.4049/jimmunol.1003208

    Article  CAS  PubMed  Google Scholar 

  45. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL et al (2019) Cytokines in clinical cancer immunotherapy. Br J Cancer 120:6–15. https://doi.org/10.1038/s41416-018-0328-y

    Article  CAS  PubMed  Google Scholar 

  46. Chen Z, Hu K, Feng L, Su R, Lai N, Yang Z et al (2018) Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci 109:1753–1763. https://doi.org/10.1111/cas.13618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vajavaara H, Mortensen JB, Leivonen SK, Hansen IM, Ludvigsen M, Holte H et al (2021) Soluble PD-1 but Not PD-L1 Levels Predict Poor Outcome in Patients with High-Risk Diffuse Large B-Cell Lymphoma. Cancers (Basel). https://doi.org/10.3390/cancers13030398

    Article  Google Scholar 

  48. He L, Zhang G, He Y, Zhu H, Zhang H, Feng Z (2005) Blockade of B7–H1 with sPD-1 improves immunity against murine hepatocarcinoma. Anticancer Res 25:3309–3313

    CAS  PubMed  Google Scholar 

  49. Abu Hejleh T, Furqan M, Ballas Z, Clamon G (2019) The clinical significance of soluble PD-1 and PD-L1 in lung cancer. Crit Rev Oncol Hematol 143:148–152. https://doi.org/10.1016/j.critrevonc.2019.08.009

    Article  PubMed  Google Scholar 

  50. Tiako Meyo M, Jouinot A, Giroux-Leprieur E, Fabre E, Wislez M, Alifano M et al (2020) Predictive Value of Soluble PD-1, PD-L1, VEGFA, CD40 Ligand and CD44 for Nivolumab Therapy in Advanced Non-Small Cell Lung Cancer: A Case-Control Study. Cancers (Basel). https://doi.org/10.3390/cancers12020473

    Article  Google Scholar 

  51. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122. https://doi.org/10.1016/j.immuni.2007.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song MY, Park SH, Nam HJ, Choi DH, Sung YC (2011) Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J Immunother 34:297–306. https://doi.org/10.1097/CJI.0b013e318210ed0e

    Article  CAS  PubMed  Google Scholar 

  53. Du Y, Nie L, Xu L, Wu X, Zhang S, Xue J (2020) Serum levels of soluble programmed death-1 (sPD-1) and soluble programmed death ligand 1(sPD-L1) in systemic lupus erythematosus: Association with activity and severity. Scand J Immunol 92: https://doi.org/10.1111/sji.12884

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Taishan Scholars Program for Young Expert of Shandong Province (tsqn20161064), the National Natural Science Foundation of China (81874178 & 82073200), and founds for Independent Cultivation of Innovative Team from Universities in Jinan (Grant No.2020GXRC023).

Author information

Authors and Affiliations

Authors

Contributions

JSX and TL designed the study. JSX, HL, and ZRD performed the systematic search. JSX, HL, GXM, ZND, LJY, SYY, HCL, JGH, ZRD, and ZQC selected eligible articles and conducted the quality assessment. JSX and HL analyzed, interpreted the data, and drafted the manuscript. TL revised the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 439 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Js., Liu, H., Meng, GX. et al. Prognostic value of soluble programmed cell death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) for hepatocellular carcinoma: a systematic review and meta-analysis. Cancer Immunol Immunother 71, 1633–1644 (2022). https://doi.org/10.1007/s00262-021-03103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03103-2

Keyword

Navigation