Skip to main content
Log in

Ovariole number—a predictor of differential reproductive success among worker subfamilies in queenless honeybee (Apis mellifera L.) colonies

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

A honeybee queen normally mates with 10–20 drones, and reproductive conflicts may arise among a colony’s different worker patrilines, especially after a colony has lost its single queen and the workers commence egg laying. In this study, we employed microsatellite markers to study aspects of worker reproductive competition in two queenless Africanized honeybee colonies. First, we determined whether there was a bias among worker patrilines in their maternity of drones and, second, we asked whether this bias could be attributed to differences in the degree of ovary activation of workers. Third, we relate these behavioral and physiological factors to ontogenetic differences between workers with respect to ovariole number. Workers from each of three (colony A) and one (colony B) patrilineal genotypes represented less than 6% of the worker population, yet each produced at least 13% of the drones in a colony, and collectively they produced 73% of the drones. Workers representing these genotypes also had more developed follicles and a greater number of ovarioles per ovary. Across all workers, ovariole development and number were closely correlated. This suggests a strong effect of worker genotype on the development of the ovary already in the postembryonic stages and sets a precedent to adult fertility, so that “workers are not born equal”. We hypothesize a frequency-dependent or “rare patriline” advantage to queenless workers over the parentage of males and discuss the maintenance of genetic variance in the reproductive capacity of workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amdam GV, Norberg K, Fondrk K, Page RE (2004) Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc Natl Acad Sci U S A 101:11350–11355

    Article  PubMed  CAS  Google Scholar 

  • Barron AB, Oldroyd BP, Ratnieks FLW (2001) Worker reproduction in honey bees (Apis) and the anarchic syndrome: a review. Behav Ecol Sociobiol 50:199–208

    Article  Google Scholar 

  • Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc Biol Sci 351:947–975

    Article  Google Scholar 

  • Brown MJF, Schmid-Hempel P (2003) The evolution of female multiple mating in social Hymenoptera. Evolution 57:2067–2081

    PubMed  Google Scholar 

  • Calis NM, Boot WJ, Allsopp MH, Beekman M (2002) Getting more than a fair share: nutrition of worker larvae related to social parasitism in the cape honey bee Apis mellifera capensis. Apidologie 33:193–202

    Article  Google Scholar 

  • Chakir M, David JR, Pla E, Capy P (1995) Genetic basis of some morphological differences between temperate and equatorial populations of Drosophila melanogaster. Experientia 51:744–748

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ (1983) Multiple mating and the evolution of social behavior in the Hymenoptera. Behav Ecol Sociobiol 12:191–201

    Article  Google Scholar 

  • Coyne JA, Rux J, David JR (1991) Genetics of morphological differences and hybrid sterility between Drosophila sechellia and its relatives. Genet Res 57:113–122

    Article  PubMed  CAS  Google Scholar 

  • Crewe RM, Velthuis HHW (1980) False queens: a consequence of mandibular gland signals in worker honey bees. Naturwissenschaften 67:467–469

    Article  Google Scholar 

  • Dedej S, Hartfelder K, Aumeier P, Rosenkranz P, Engels W (1998) Caste determination is a sequential process: effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica). J Apic Res 37:183–190

    Google Scholar 

  • Engels W (1974) Occurrence and significance of vitellogenins in female castes of social Hymenoptera. Am Zool 14:1229–1237

    CAS  Google Scholar 

  • Estoup A, Turgeon J (1996) Microsatellite marker isolation with non-radioactive probes and amplification. http://www.inapg.inra.fr/dsa/microsat/microsat.htm

  • Estoup A, Solignac M, Cornuet JM (1994) Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc R Soc Lond B Biol Sci 258:1–7

    Article  CAS  Google Scholar 

  • Foster KR, Ratnieks FLW (2001a) Paternity, reproduction and conflict in vespine wasps: a model system for testing kin selection predictions. Behav Ecol Sociobiol 50:1–8

    Article  Google Scholar 

  • Foster KR, Ratnieks FLW (2001b) Convergent evolution of worker policing by egg eating in the honeybee and common wasp. Proc R Soc Lond B Biol Sci 268:169–174

    Article  CAS  Google Scholar 

  • Fuchs S, Moritz RFA (1999) Evolution of extreme polyandry in the honeybee Apis mellifera L. Behav Ecol Sociobiol 45:269–275

    Article  Google Scholar 

  • Hartfelder K, Steinbrück G (1997) Germ cell cluster formation and cell death are alternatives in caste-specific differentiation of the larval honey bee ovary. Invertebr Reprod Dev 31:237–250

    Google Scholar 

  • Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hepburn HR, Reece SL, Neumann P, Moritz RFA, Radloff SE (1999) Absconding in honeybees (Apis mellifera) in relation to queen status and mode of worker reproduction. Insectes Soc 46:323–326

    Article  Google Scholar 

  • Hillesheim E, Koeniger N, Moritz RFA (1989) Colony performance in honeybees (Apis mellifera capensis Esch.) depends on the proportion of subordinate and dominant workers. Behav Ecol Sociobiol 24:291–296

    Article  Google Scholar 

  • Hodin J, Riddiford LM (2000) Different mechanisms underlie phenotypic plasticity and interspecific variation for a reproductive character in drosophilids (Insecta : Diptera). Evolution 54:1638–1653

    PubMed  CAS  Google Scholar 

  • Hoover SE, Keeling CI, Winston ML, Slessor KN (2003) The effect of queen pheromone on worker honey bee ovary development. Naturwissenschaften 90:477–480

    Article  PubMed  CAS  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR protocols. Academic, San Diego, CA

    Google Scholar 

  • Kraus B, Page RE (1998) Parasites, pathogens, and polyandry in social insects. Am Nat 151:383–391

    Article  PubMed  CAS  Google Scholar 

  • Mackensen O (1943) The occurrence of parthenogenetic females in some strains of honeybees. J Econ Entomol 36:465–467

    Google Scholar 

  • Martin SJ, Beekman M, Wossler TC, Ratnieks FLW (2002) Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature 415:163–165

    PubMed  CAS  Google Scholar 

  • Martin CG, Oldroyd BP, Beekman M (2004) Differential reproductive success among subfamilies in queenless honeybee (Apis mellifera L.) colonies. Behav Ecol Sociobiol 56:42–49

    Article  Google Scholar 

  • Montague CE, Oldroyd BP (1998) The evolution of worker sterility in honey bees: an investigation into a behavioral mutant causing failure of worker policing. Evolution 52:1408–1415

    Article  Google Scholar 

  • Moritz RFA (1989) Colony level and within colony level selection in honeybees. A two allele population model for Apis mellifera capensis. Behav Ecol Sociobiol 25:437–444

    Article  Google Scholar 

  • Moritz RFA, Hillesheim E (1985) Inheritance of dominance in honeybees (Apis mellifera capensis Esch.). Behav Ecol Sociobiol 17:87–89

    Article  Google Scholar 

  • Moritz RFA, Kryger P, Koeniger G, Koeniger N, Estoup A, Tingek S (1995) High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav Ecol Sociobiol 37:357–363

    Article  Google Scholar 

  • Moritz RFA, Kryger P, Allsopp MH (1996) Competition for royalty in bees. Nature 384:31

    Article  CAS  Google Scholar 

  • Moritz RFA, Kryger P, Allsopp MH (1999) Lack of worker policing in the Cape honeybee (Apis mellifera capensis). Behaviour 136:1079–1092

    Article  Google Scholar 

  • Moritz RFA, Simon UE, Crewe RM (2000) Pheromonal contest between honeybee workers (Apis mellifera capensis). Naturwissenschaften 87:395–397

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Moritz RFA (2002) The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav Ecol Sociobiol 52:271–282

    Article  Google Scholar 

  • Oldroyd BP, Smolenski AJ, Cornuet J-M, Crozier RH (1994) Anarchy in the beehive. Nature 371:749

    Article  CAS  Google Scholar 

  • Oldroyd BP, Clifton MJ, Parker K, Wonsiri S, Rinderer TE, Crozier RH (1998) Evolution of mating behavior in the genus Apis and an estimate of mating frequency in Apis cerana (Hymenoptera–Apidae). Ann Entomol Soc Am 91:700–709

    CAS  Google Scholar 

  • Oldroyd BP, Wossler TC, Ratnieks FLW (2001) Regulation of ovary activation in worker honey-bees (Apis mellifera): larval signal production and adult response thresholds differ between anarchistic and wild-type bees. Behav Ecol Sociobiol 50:366–370

    Article  Google Scholar 

  • Paar J, Oldroyd BP, Huettinger E, Kastberger G (2004) Genetic structure of an Apis dorsata population: the significance of migration and colony aggregation. J Hered 95:119–126

    Article  PubMed  CAS  Google Scholar 

  • Page RE, Erickson EH (1988) Reproduction by worker honey bees (Apis mellifera L.). Behav Ecol Sociobiol 23:117–126

    Article  Google Scholar 

  • Page RE, Robinson GE (1994) Reproductive competition in queenless honeybee colonies (Apis mellifera L.). Behav Ecol Sociobiol 35:99–107

    Article  Google Scholar 

  • Page RE, Robinson GE, Britton DS, Fondrk MK (1992) Genotypic variability for rates of behavioral development in worker honeybees (Apis mellifera L.). Behav Ecol 3:173–180

    Article  Google Scholar 

  • Page RE, Waddington KD, Hunt GJ, Fondrk MK (1995) Genetic determinants of honey bee foraging behaviour. Anim Behav 50:1617–1625

    Article  Google Scholar 

  • Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248

    Article  Google Scholar 

  • Palmer KA, Oldroyd BP, Franck P, Hadisoesilo S (2001) Very high paternity frequency in Apis nigrocincta. Insectes Soc 48:327–332

    Article  Google Scholar 

  • Pankiw T, Page RE (1999) The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol A Sens Neural Behav Physiol 185:207–213

    Article  CAS  Google Scholar 

  • Pankiw T, Page RE (2001) Genotype and colony environment affect honeybee (Apis mellifera L.) development and foraging behavior. Behav Ecol Sociobiol 51:87–94

    Article  Google Scholar 

  • Rachinsky A, Strambi C, Strambi A, Hartfelder K (1990) Caste and metamorphosis: hemolymph titers of juvenile hormone and ecdysteroids in last instar honey bee larvae. Gen Comp Endocrinol 79:31–38

    Article  PubMed  CAS  Google Scholar 

  • Ratnieks FLW (1993) Egg laying, egg removal, and ovary development by workers in queenright honey bee colonies. Behav Ecol Sociobiol 32:191–198

    Article  Google Scholar 

  • Robinson GE, Page RE (1995) Genotypic constraints on plasticity for corpse removal in honeybee colonies. Anim Behav 49:867–876

    Article  Google Scholar 

  • Ross KG (2001) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10:265

    Article  PubMed  CAS  Google Scholar 

  • Ruttner F, Hesse B (1981) Rassenspezifische Unterschiede in Ovarentwicklung und Eiablage von weisellosen Arbeiterinnen der Honigbiene Apis mellifera. Apidologie 12:159–183

    Article  Google Scholar 

  • Sanguinetti C, Dias Netto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:209–214

    Google Scholar 

  • Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Philos Trans R Soc Biol Sci 354:507–515

    Article  Google Scholar 

  • Schmidt Capella IC, Hartfelder K (1998) Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee (Apis mellifera L.) ovary. J Insect Physiol 44:385–391

    Article  Google Scholar 

  • Schmidt Capella IC, Hartfelder K (2002) Juvenile hormone-dependent interaction of actin and spectrin in polymorphic differentiation of the larval honey bee ovary. Cell Tissue Res 307:265–272

    Article  PubMed  Google Scholar 

  • Simon UE, Moritz RFA, Crewe RM (2005) Reproductive dominance among honeybee workers in experimental groups of Apis mellifera capensis. Apidologie 36:413–419

    Article  Google Scholar 

  • Spivak M, Fletcher DJC, Breed MD (1991) The “African” honey bee. Westview, Boulder, CO, pp 435

    Google Scholar 

  • Tanaka ED, Hartfelder K (2004) The initial stages of oogenesis in the honey bee, Apis mellifera, in the context of caste, social conditions and mating. Arthropod Struct Dev 33:431–442

    Article  PubMed  CAS  Google Scholar 

  • Tucker K (1958) Automictic parthenogenesis in the honey bee. Genetics 43:299–316

    PubMed  CAS  Google Scholar 

  • Vanderblom J (1991) Social regulation of egg-laying by queenless honeybee workers (Apis mellifera L). Behav Ecol Sociobiol 29:341–346

    Article  Google Scholar 

  • Vanderblom J, Boot WJ, Velthuis HHW (1994) Simultaneous queen raising and egg laying by workers in Africanized honeybee colonies (Apis mellifera L.) in Costa-Rica. Apidologie 25:367–374

    Article  Google Scholar 

  • Velthuis HH (1970) Ovarian development in Apis mellifera worker bees. Entomol Exp Appl 13:377–394

    Article  Google Scholar 

  • Velthuis HHW, Ruttner F, Crewe RM (1990) Differentiation in reproductive physiology and behaviour during the development of laying worker honey bees. In: Engels W (ed) Social insects—an evolutionary approach to caste and reproduction. Springer, Berlin Heidelberg New York, pp 231–243

    Google Scholar 

  • Visscher PK (1989) A quantitative study of worker reproduction in honeybee colonies. Behav Ecol Sociobiol 25:247–254

    Article  Google Scholar 

  • Wayne ML, Mackay TFC (1998) Quantitative genetics of ovariole number in Drosophila melanogaster. II. Mutational variation and genotype-environment interaction. Genetics 148:201–210

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Zilá L. P. Simões for the comments and helpful suggestions, Vera L. C. Figueiredo for the technical assistance with DNA extractions and PCRs, and the referees for the valuable comments on the manuscript. Financial support was provided by FAPESP (1999/00719-6 and 00/01473), DAAD/CAPES (PKZ: A/02/37112), and the DFG (Pa 632). The work described in this paper conforms to the current laws of Brazil and Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo R. Makert.

Additional information

Communicated by R. Page

Electronic supplementary material

Below is the link to the electronic supplementary material

Supplement 1

(PDF 17 kb)

Supplement 2

(PDF 17 kb)

Supplement 3

(PDF 11 kb)

Supplement 4

(PDF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makert, G.R., Paxton, R.J. & Hartfelder, K. Ovariole number—a predictor of differential reproductive success among worker subfamilies in queenless honeybee (Apis mellifera L.) colonies. Behav Ecol Sociobiol 60, 815–825 (2006). https://doi.org/10.1007/s00265-006-0225-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-006-0225-x

Keywords

Navigation