Skip to main content
Log in

Why are warning displays multimodal?

  • Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Multimodal defensive displays are commonplace, with prey combining conspicuous coloration, sounds, odours and other chemical emissions to deter predators. These components can signal to predators in multiple signal modalities to warn them that prey are defended. The aim of our review is to examine the form and function of multimodal warning displays. Data collected from the literature on multimodal insect warning displays show the degree of complexity and diversity that needs to be explained, and we identify patterns in the data that may be worthy of more rigorous investigation. We also provide a theoretical framework for the study of multimodal warning displays, and evaluate the evidence for different functional hypotheses that can explain their widespread evolution. Our review highlights that whilst multimodal warning displays are well documented, particularly in insects, we lack a good understanding of their function in natural predator–prey systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alatalo RV, Mappes J (1996) Tracking the evolution of warning signals. Nature 382:708–710

    Article  CAS  Google Scholar 

  • Alexander RD (1964) Acoustic communication in arthropods. Ann Rev Ent 12:495–526

    Article  Google Scholar 

  • Barber JR, Conner WE (2007) Acoustic mimicry in a predator–prey interaction. Proc Nat Acad Sci 104:9331–9334

    Article  PubMed  CAS  Google Scholar 

  • Barnett CA (2007) The effects of energetic and physiological state on the foraging decisions of birds. Unpublished PhD thesis, Newcastle University

  • Barnett CA, Skelhorn J, Bateson M, Rowe C (2012) Educated predators make strategic decisions to eat defended prey according to their toxin content. Behav Ecol 23:418–424

    Article  Google Scholar 

  • Bates HW (1862) Contributions to an insect fauna of the Amazon valley (Lepidoptera: Heliconidae). Trans Linn Soc Lond 23:495–566

    Article  Google Scholar 

  • Bates DL, Fenton MB (1990) Aposematism or startle? Predators learn their responses to the defenses of prey. Can J Zool 68:49–52

    Article  Google Scholar 

  • Bedford GO, Chinnick LJ (1966) Conspicuous displays in two species of Australian stick insects. Anim Behav 14:518–521

    Article  PubMed  CAS  Google Scholar 

  • Bennett AD, Cuthill IC (1994) Ultraviolet vision in birds: what is its function? Vis Res 34:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Bezzerides AL, McGraw KJ, Parker RS, Husseini J (2007) Elytra color as a signal of chemical defense in the Asian ladybird beetle Harmonia axyridis. Behav Ecol Sociobiol 61:1401–1408

    Article  Google Scholar 

  • Bisset GW, Frazer JFD, Rothschild M, Schachter M (1960) A pharmacologically active choline ester and other substances in the garden tiger moth Arctia caja (L.). Proc R Soc Lond B 152:255–262

    Article  PubMed  CAS  Google Scholar 

  • Blest AD (1964) Protective display and sound production in some New World arctiid and ctenuchid moths. Zoologica 49:161–181

    Google Scholar 

  • Blount JD, Rowland HM, Drijfhout FP, Endler JA, Inger R, Sloggett JJ, Hurst GDD, Hodgson DJ, Speed MP (2012) How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. Funct Ecol 26:334–342

    Article  Google Scholar 

  • Boppré M (1986) Insect pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Article  Google Scholar 

  • Brower LP, Calvert WH (1985) Foraging dynamics of bird predators on overwintering monarch butterflies in Mexico. Evolution 39:852–868

    Article  Google Scholar 

  • Brower LP, Fink LS (1985) A natural toxic defense system: cardenolides in butterfly versus birds. Ann N Y Acad Sci 443:171–188

    Article  PubMed  CAS  Google Scholar 

  • Brown SG, Boettner GH, Yack JE (2007) Clicking caterpillars: acoustic aposematism in Antheraea polyphemus and other Bombycoidea. J Exp Biol 210:993–1005

    Article  PubMed  Google Scholar 

  • Bruum H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Study Behav 35:151–209

    Article  Google Scholar 

  • Bura VL, Fleming AJ, Yack JE (2009) What's the buzz? Ultrasonic and sonic warning signals in caterpillars of the great peacock moth (Saturnia pyri). Naturwiss 96:713–718

    Article  PubMed  CAS  Google Scholar 

  • Bura VL, Rohwer VG, Martin PR, Yack JE (2011) Whistling in caterpillars (Amorpha juglandis, Bombycoidea): sound-producing mechanism and function. J Exp Biol 214:30–37

    Google Scholar 

  • Bura VL, Hnain AK, Hick JN, Yack JE (2012) Defensive sound production in the tobacco hornworm, Manduca sexta (Bombycoidea: Sphingidae). J Insect Behav 25:114–126

    Article  Google Scholar 

  • Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78:559–571

    Article  Google Scholar 

  • Carpenter GDH (1938) Audible emission of defensive froth by insects. Proc Zool Soc A 242–251

  • Carpenter GDH, Ford EB (1933) Mimicry. Methuen, London

    Google Scholar 

  • Claridge MF (1974) Stridulation and defensive behaviour in the ground beetle, Cychrus caraboides (L.). J Entomol A 49:7–15

    Google Scholar 

  • Cohen JA (1985) Differences and similarities in cardenolide contents of Queen and Monarch butterflies in Florida and their ecological and evolutionary implications. J Chem Ecol 11:85–103

    Article  CAS  Google Scholar 

  • Conner WE, Corcoran AJ (2012) Sound strategies: The 65-million-year-old battle between bats and insects. Annu Rev Entomol 57:21–39

    Article  PubMed  CAS  Google Scholar 

  • Corcoran AJ, Barber JR, Hristov NI, Conner WE (2011) How do tiger moths jam bat sonar? J Exp Biol 214:2416–2425

    Article  PubMed  Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen, London

    Google Scholar 

  • Cuthill IC, Stevens M, Sheppard J, Maddocks T, Parraga CA, Troscianko TS (2005) Disruptive coloration and background pattern matching. Nature 434:72–74

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1887) The life and letters of Charles Darwin: including an autobiographical chapter, edited by his son Francis Darwin. Murray, London

    Book  Google Scholar 

  • de Jong PW, Holloway GJ, Brakefield PM, Vos H (1991) Chemical defense in the ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defense in 2-spot ladybirds (Adalia bipunctata). Chemoecology 2:15–19

    Article  Google Scholar 

  • Dean J (1980) Encounters between bomardier beetles and two species of toads (Bufo americanus, Bufo marinus): speed pf prey capture does not determine success. J Comp Physiol 135:41–50

    Article  Google Scholar 

  • Dittrich W, Gilbert F, Green P, McGregor P, Grewcock D (1993) Imperfect mimicry: a pigeon’s perspective. Proc R Soc Lond B 251:195–200

    Article  Google Scholar 

  • Dunning DC (1968) Warning sounds of moths. Z Tierpsychol 25:129–138

    Google Scholar 

  • Edmunds M (1974) Defence in animals. Longman, Harlow

    Google Scholar 

  • Eisner T (2003) For the love of insects. Harvard University Press, Cambridge

    Google Scholar 

  • Eisner T, Grant RP (1980) Toxicity, odor aversion and “olfactory aposematism”. Science 213:416

    Google Scholar 

  • Eisner T, Aneshansley D, Eisner M, Rutowski R, Chong B, Meinivald J (1974) Chemical defense and sound production in Australian tenebrionid bettles (Adelium spp.). Psyche 81:189–208

    Article  CAS  Google Scholar 

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63:1–27

    Article  Google Scholar 

  • Exnerová A, Landová E, Stys P, Fuchs R, Prokopová M, Cehláriková P (2003) Reactions of passerine birds to aposematic and non-aposematic firebugs (Pyrrhocoris apterus; Heteroptera). Biol J Lonn Soc 78:517–525

    Article  Google Scholar 

  • Fenton MB, Roeder KD (1974) The microtymbals of some Arctiidae. J Lepidopt Soc 28:205–211

    Google Scholar 

  • Franchina JJ, Moon C, Peters S (1997) Effects of toxin magnitude on taste aversion and taste-potentiated aversion to visual cues in chicks (Gallus domesticus). Physiol Behav 62:605–609

    Article  PubMed  CAS  Google Scholar 

  • Fryday SL, Greig-Smith PW (1994) The effects of social learning on the food choice of the house sparrow (Passer domesticus). Behaviour 128:281–300

    Article  Google Scholar 

  • Gaul AT (1952) Audio mimicry: an adjunct to colour mimicry. Psyche 59:82–83

    Article  Google Scholar 

  • Ghirlanda S, Enquist M (2003) A century of generalization. Anim Behav 66:15–36

    Article  Google Scholar 

  • Gilbert FS (2005) The evolution of imperfect mimicry. In: Fellowes MDE, Holloway GJ, Rolff J (eds) Insect evolutionary ecology. CABI, Wallingford, pp 231–288

    Google Scholar 

  • Gittleman JL, Harvey PH (1980) Why are distasteful prey not cryptic? Nature 286:149–150

    Article  Google Scholar 

  • Guilford T (1994) Go-slow signaling and the problem of automimicry. J Theor Biol 170:311–316

    Article  Google Scholar 

  • Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1–14

    Article  Google Scholar 

  • Guilford T, Rowe C (2000) Aposematism: to be red or dead. Trends Ecol Evol 15:261–262

    Article  Google Scholar 

  • Guilford T, Nicol C, Rothschild M, Moore BP (1987) The biological roles of pyrazines: evidence for a warning odour function. Biol J Linn Soc 31:113–128

    Article  Google Scholar 

  • Halpin CG, Skelhorn J, Rowe C (2008a) Being conspicuous and defended: selective benefits for the individual. Behav Ecol 19:1012–1017

    Article  Google Scholar 

  • Halpin CG, Skelhorn J, Rowe C (2008b) Naïve predators and selection for rare conspicuous defended prey: the initial evolution of aposematism revisited. Anim Behav 75:771–781

    Article  Google Scholar 

  • Halpin CG, Skelhorn J, Rowe C (2012) The relationship between sympatric defended species depends upon predators’ discriminatory behaviour. PLoS One 7:e44895

    Article  PubMed  CAS  Google Scholar 

  • Haskell PT (1956) tape recording of sounds emitted by the peacock butterfly. Proc R Ent Soc C 21:20–22

    Google Scholar 

  • Haskell PT (1961) Insect sounds. HF&G Witherby, London

    Google Scholar 

  • Hatle JD, Salazar BA, Whitman DW (2002) Survival advantage of sluggish individuals in aggregations of aposematic prey during encounters with ambush predators. Evol Ecol 16:415–431

    Article  Google Scholar 

  • Hauglund K, Snorre HB, Lampe H (2006) Responses of domestic chicks Gallus gallus domesticus to multimodal aposematic signals. Behav Ecol 17:392–398

    Article  Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Article  Google Scholar 

  • Hill SA (2007) Sound generation in Mantis religiosa (Mantodea: Mantidae): stridulatory structures and acoustic signal. J Orthopt Res 16:35–49

    Article  Google Scholar 

  • Ingalls V (1993) Startle and habituation responses of blue jays (Cyanocitta cristata) in a laboratory simulation of anti-predator defenses of Catocala moths (Lepidoptera: Noctuidae). Behaviour 126:77–96

    Article  Google Scholar 

  • Järrvi T, Sillen-Tullberg D, Wiklund C (1981) The cost of being aposematic: an experimental study of predation on larvae of Papilio machaon by the great tit Parus major. Oikos 36:267–272

    Article  Google Scholar 

  • Jetz W, Rowe C, Guilford T (2001) Non-warning odors trigger innate color aversions—as long as they are novel. Behav Ecol 12:134–139

    Article  Google Scholar 

  • Johnstone RA (1996) Multiple displays in animal communication: “back-up signals” and “multiple messages”. Phil Trans R Soc Lond B 352:329–338

    Article  Google Scholar 

  • Jones CG, Whitman DW, Compton SJ, Silk PJ, Blum MS (1989) Reduction in diet breadth results in sequestration of plant chemicals and increases efficacy of chemical defense in a generalist grasshopper. J Chem Ecol 15:1811–1822

    Article  CAS  Google Scholar 

  • Kaye H, Mackintosh NJ, Rothschild M, Moore BP (1989) Odour of pyrazine potentiates an association between environmental cues and unpalatable taste. Anim Behav 37:563–568

    Article  Google Scholar 

  • Kelly DJ, Marples NM (2004) The effects of novel odour and colour cues on food acceptance by the zebra finch (Taeniopygia guttata). Anim Behav 68:1049–1054

    Article  Google Scholar 

  • Kirchner WH, Röschard J (1999) Hissing in bumblebees: an interspecific defence signal. Insect Soc 46:239–243

    Article  Google Scholar 

  • Laurent P, Braekman JC, Daloze D (2005) Insect chemical defence. Top Curr Chem 240:167–229

    CAS  Google Scholar 

  • Lindström L, Alatalo RV, Mappes J, Riipi M, Vertainen L (1999) Can aposematic signals evolve by gradual change? Nature 397:249–251

    Article  Google Scholar 

  • Lindström L, Rowe C, Guilford T (2001) Pyrazine odour makes visually conspicuous prey aversive. Proc R Soc Lond B 268:1–4

    Article  Google Scholar 

  • Mackintosh NJ (1974) The psychology of animal learning. Academic, London

    Google Scholar 

  • Marples NM, Roper TJ (1996) Effects of colour and smell on the response of naive chicks towards food and water. Anim Behav 51:1417–1424

    Article  Google Scholar 

  • Marples NM, van Veelen W, Brakefield PM (1994) The relative importance of colour, taste and smell in the protection of an aposematic insect Coccinella septempunctata. Anim Behav 48:967–974

    Article  Google Scholar 

  • Mason JR, Reidinger RF (1982) Observational learning of food aversions in red-winged blackbirds (Agelaius phoeniceus). Auk 99:548–554

    Google Scholar 

  • Masters WM (1979) Insect disturbance stridulation: its defensive role. Behav Ecol Sociobiol 5:187–200

    Article  Google Scholar 

  • Møller AP, Pomiankowski A (1993) Why have birds got multiple sexual ornaments? Behav Ecol Sociobiol 32:167–176

    Google Scholar 

  • Moore BP, Brown MV, Rothschild M (1990) Methylalkylpyrazines in aposematic insects, their hostplants and their mimics. Chemoecology 1:43–51

    Article  CAS  Google Scholar 

  • Nickle DA, Castner JL, Smedley SR, Attygalle AB, Meinwald J, Eisner T (1996) Pyrazine emission by a tropical katydid: an example of chemical aposematism? (Orthoptera Tettigoniidae: Copiphorinae: Vestra Stål). J Orthopt Res 5:221–223

    Article  Google Scholar 

  • Olofsson M, Vallin A, Jakobsson S, Wiklund C (2011) Winter predation on two species of hibernating butterflies: monitoring rodent attacks with infrared cameras. Anim Behav 81:529–534

    Article  Google Scholar 

  • Pasteels JM, Grégoire J-C, Rowell-Rahier M (1983) The chemical ecology of defense in arthropods. Ann Rev Ent 28:263–289

    Article  CAS  Google Scholar 

  • Pearson DL (1989) What is the adaptive significance of multicomponent defensive repertoires? Oikos 54:251–253

    Article  Google Scholar 

  • Pomini AM, Machado G, Pinto-da-Rocha R, Macías-Ordóñez R, Marsaioli AJ (2010) Lines of defense in the harvestman Hoplobunus mexicanus (Arachnid: Opiliones): aposematism, stridulation, thanatosis, and irritant chemicals. Biochem Syst Ecol 38:300–308

    Article  CAS  Google Scholar 

  • Poulton EB (1890) The colours of animals: their meaning and use especially considered in the case of insects. Kegan Paul, Trench, Trübner and Co, London

    Google Scholar 

  • Prudic KL, Skemp AK, Papaj DR (2007) Aposematic coloration, luminance contrast and the benefits of conspicuousness. Behav Ecol 18:41–46

    Article  Google Scholar 

  • Raab DH (1962) Statistical facilitation of simple reaction times. Trans NY Acad Sci 24:574–590

    Article  CAS  Google Scholar 

  • Rashed A, Khan MI, Dawson JW, Yack JE, Sherratt TN (2009) Do hoverflies (Diptera: Syrphidae) sound like the Hymenoptera they morphologically resemble? Behav Ecol 20:396–402

    Article  Google Scholar 

  • Ratcliffe JM, Nydam ML (2008) Multimodal warning signals for a multiple predator world. Nature 455:96–99

    Article  PubMed  CAS  Google Scholar 

  • Ritland DB (1994) Variation in palatability of queen butterflies (Danaus gilippus) and implications regarding mimicry. Ecology 75:732–746

    Article  Google Scholar 

  • Roper TJ, Cook SE (1989) Responses of chicks to brightly coloured insect prey. Behaviour 110:276–293

    Article  Google Scholar 

  • Roper TJ, Marples NM (1997) Odour and colour as cues for taste-avoidance learning in domestic chicks. Anim Behav 53:1241–1250

    Article  PubMed  Google Scholar 

  • Roper TJ, Redston S (1987) Conspicuousness of distasteful prey affects the strength and durability of one-trial aversive learning. Anim Behav 35:739–747

    Article  Google Scholar 

  • Roth LM, Eisner T (1962) Chemical defenses of arthropods. Annu Rev Entomol 7:107–136

    Article  CAS  Google Scholar 

  • Rothschild M (1961) Defensive odours and Mullerian mimicry among insects. Trans R Ent Soc Lond 113:101–121

    Article  Google Scholar 

  • Rothschild M (1965) Proc R Ent Soc Lond C 30:3

    Google Scholar 

  • Rothschild M, Haskell PT (1966) Stridulation of the garden tiger moth Arctia caja L. audible to the human ear. Proc R Ent Soc Lond A 41:167–170

    Google Scholar 

  • Rothschild M, Moore BP (1987) Pyrazines as alerting signals in toxic plants and insects. In: Labeyrie V, Fabres G, Fachaise D (eds) Insect–plants. W. Junk, Dordrecht

    Google Scholar 

  • Rothschild M, Moore BP, Brown WV (1984) Pyrazines as warning odour components in the monarch butterfly, Danaus plexippus, and in moths of the genera Zygaena and Amata (Lepidoptera). Biol J Linn Soc 23:372–380

    Article  Google Scholar 

  • Rowe C (1998) Multicomponent signals. Unpubl. DPhil thesis, University of Oxford

  • Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931

    Article  PubMed  Google Scholar 

  • Rowe C (2002) Sound improves visual discrimination learning in avian predators. Proc R Soc Lond B 269:1353–1357

    Article  Google Scholar 

  • Rowe C, Guilford T (1996) Hidden colour aversions in domestic chicks triggered by pyrazine odours of insect warning displays. Nature 383:520–522

    Article  CAS  Google Scholar 

  • Rowe C, Guilford T (1999) Novelty effects in a multimodal warning signal. Anim Behav 57:341–346

    Article  PubMed  Google Scholar 

  • Rowe C, Guilford T (2000) Aposematism: to be red or dead. Trends Ecol Evol 15:261–262

    Article  Google Scholar 

  • Rowe C, Guilford T (2001) The evolution of multimodal warning displays. Evol Ecol 13:655–671

    Article  Google Scholar 

  • Rowe C, Skelhorn J (2005) Colour biases are a question of taste. Anim Behav 69:587–594

    Article  Google Scholar 

  • Ruxton GD, Kennedy MW (2006) Peppers and poisons: the evolutionary ecology of bad taste. J Anim Ecol 75:1224–1226

    Article  PubMed  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. OUP, Oxford

    Book  Google Scholar 

  • Schilman PE, Lazzari CR, Manrique G (2001) Comparison of disturbance stridulations in five species of triatominae bugs. Acta Trop 79:171–178

    Article  PubMed  CAS  Google Scholar 

  • Schlenoff DH (1985) The startle responses of blue jays (Cyanocitta cristata) to Catocala (Lepidoptera: Noctuidae) prey models. Anim Behav 33:1057–1067

    Article  Google Scholar 

  • Schuler W, Hesse E (1985) On the function of warning coloration: a black and yellow pattern inhibits prey-attack by naive domestic chicks. Behav Ecol Sociobiol 16:249–255

    Article  Google Scholar 

  • Sen-Sarma M, Fuchs S, Werber C, Tautz J (2002) Worker piping triggers hissing for coordinated colony defence in the dwarf honeybee Apis florae. Zoology 105:215–223

    Article  PubMed  Google Scholar 

  • Sherratt TN, Speed MP, Ruxton GD (2004) Natural selection on unpalatable species imposed by state-dependent foraging behaviour. J Theor Biol 228:217–226

    Article  PubMed  Google Scholar 

  • Siddall EC, Marples NM (2008) Better to be bimodal: the interaction of color and odor on learning and memory. Behav Ecol 19:425–432

    Article  Google Scholar 

  • Siddall EC, Marples NM (2011a) The effect of pyrazine odor on avoidance learning and memory in wild robins Erithacus rubecula. Curr Zool 57:208–214

    Google Scholar 

  • Siddall EC, Marples NM (2011b) Hear no evil: the effect of auditory warning signals on avian innate avoidance, learned avoidance and memory. Curr Zool 57:197–207

    Google Scholar 

  • Skelhorn J (2011) Colour biases are a question of conspecifics’ taste. Anim Behav 81:825–829

    Article  Google Scholar 

  • Skelhorn J, Rowe C (2006) Avian predators taste-reject aposematic prey on their level of chemical defence. Biol Lett 2:348–350

    Article  PubMed  Google Scholar 

  • Skelhorn J, Rowe C (2007) Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr Biol 17:1479–1483

    Article  PubMed  CAS  Google Scholar 

  • Skelhorn J, Rowe C (2009) Distastefulness as an antipredator defence strategy. Anim Behav 78:761–766

    Article  Google Scholar 

  • Skelhorn J, Rowe C (2010) Birds learn to use distastefulness as a signal of toxicity. Proc R Soc Lond B 277:1729–1734

    Article  Google Scholar 

  • Skelhorn J, Griksaitis D, Rowe C (2008) Colour biases are more than a question of taste. Anim Behav 75:827–835

    Article  Google Scholar 

  • Smith SM (1975) Innate recognition of coral snake pattern by a possible avian predator. Science 187:759–760

    Article  PubMed  CAS  Google Scholar 

  • Speed MP, Alderson NJ, Hardman C, Ruxton GD (2000) Testing Müllerian mimicry: an experiment with wild birds. Proc R Soc Lond B 267:725–731

    Article  CAS  Google Scholar 

  • Srygley RB (2004) The aerodynamic costs of warning signals in palatable mimetic butterflies and their distasteful models. Proc R Soc Lond B 271:589–594

    Article  Google Scholar 

  • Vallin A, Jakobsson S, Lind J, Wiklund C (2005) Prey survival by predator intimidation: an experimental study of peacock butterfly defense against blue tits. Proc R Soc Lond B 272:1203–1207

    Article  Google Scholar 

  • Wallace AR (1867) Journal of Proceeding of the Entomological Society of London meeting March 4th, 5:lxxx-lxxxi, In Transactions of the Entomological Society of London 3rd series, vol III, London 1864–1869

  • Wheeler JW, Chung RH, Oh SK, Benfield EF, Neef SE (1970) Defensive secretions of cychrine beetles (Coleoptera: Carabidae). Ann Ent Soc Am 63:469–471

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to James Higham and Eileen Hebets for inviting us to submit a review to this special issue, and to Eileen and two anonymous reviewers for their enormously stimulating and helpful comments on the manuscript. We would also like to thank Melissa Bateson, Ben Brilot, Sue Healy, Domhnall Jennings, John Skelhorn, Martin Stevens and Jeri Wright for helpful discussions (that they may or may not remember) on various aspects of the manuscript. The review was supported by a BBSRC and NERC co-funded project grant (BB/G00188X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candy Rowe.

Additional information

Communicated by E. A. Hebets

This manuscript is part of the special issue Multimodal Communication—Guest Editors: James P. Higham and Eileen A. Hebets

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, C., Halpin, C. Why are warning displays multimodal?. Behav Ecol Sociobiol 67, 1425–1439 (2013). https://doi.org/10.1007/s00265-013-1515-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1515-8

Keywords

Navigation