Skip to main content
Log in

Rhombohedral ilmenite group nickel titanates with Zn, Mg, and Mn: synthesis and crystal structures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Binary, ternary, and quaternary rhombohedral ordered titanates, Ni1/2Mn1/2TiO3, Ni1/2Mg1/2TiO3, Ni1/3Zn1/3Mg1/3TiO3, and Ni1/4Zn1/4Mg1/4Mn1/4TiO3, were obtained by solid-state synthesis at 1095°C at ambient pressure in a nitrogen atmosphere. All of the compounds adopt ATiO3 (A = Ni, Mn, Zn, and Mg) stoichiometry. Crystal structures were refined by the Rietveld method from powder X-ray diffraction data. Unit cell parameters and unit cell volumes decrease with decreasing average radius of the vi A 2+ cation. All the synthetic titanates adopt the space group \(R\bar 3\) and the ilmenite structure consisting of distorted AO6 and TiO6 octahedra. The divalent cations and Ti4+ are distributed in layers of octahedra alternating along c with no evidence for disorder. In common with pyrophanite, NiTiO3, and ilmenite sensu stricto, the distortion of the AO6 octahedra is less than that of the TiO6 octahedra. The Ti4+ and A-site cations in the titanates are off-centred within the coordination polyhedra. Deviation of the z positional parameters from their theoretical values for the A and Ti atoms indicate that in the titanates with the larger A 2+ cations and Goldschmidt tolerance factors, t ≥ 0.745, the AO6 octahedral layer is more “puckered” above and below planes parallel to (001) than that of the TiO6 octahedra, and vice versa in the titanates with smaller R 2+ A for which t≤0.745. Data are given for the volumes and distortion indices of all the coordination polyhedra. This study confirms the existence and stability of complex solid solutions between ordered rhombohedral titanates of Ni and first-row transition metals at ambient conditions over a range of t from 0.786 to 0.737. These experimental data suggest that the formation of ilmenite-type titanates enriched in Ni is possible in exotic mineral-forming systems at low pressure and/or in extraterrestrial rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Badjukov DD, Raitala J, Petrova TL (2001) Ni–Co, Cu, and Zn sulphides in the melt rocks of the Saaksjarvi crater: characteristics and their possible origin. In: 32nd Ann Lunar Planet Science Conf Houston, Texas, http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1532.pdf

  • Balić-Žunić T, Vicković I (1996) IVTON—a program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. J Appl Crystallogr 29:305–306

    Article  Google Scholar 

  • Boysen H, Frey F, Lerch M, Vogt T (1995) A neutron powder investigation of the high-temperature phase transition in NiTiO3. Zeitschr Krystallogr 210:328–337

    Google Scholar 

  • Bruker AXS (2001) Powder diffraction file (PDF). Release 2001, Bruker AXS GmbH

  • Bruker AXS (2003) TOPAS 2.1: General profile and structure analysis software for powder diffraction data. User’s Manual, Bruker AXS. Karlsruhe, Germany, p 79

    Google Scholar 

  • Cheary RW, Coelho AA (1992) A fundamental parameters approach to X-ray line profile fitting. J Appl Crystallogr 25:109–121

    Article  Google Scholar 

  • Coelho AA (2000) Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Crystallogr 33:899–908

    Article  Google Scholar 

  • Dowty E (1999) Atoms 5.0. By Shape Software, Kingsport, TN 37663, USA, http://shapesoftware.com/

  • Goldschmidt VM (1926) Naturwissenschaft 14:477–485 (not seen; a cross-reference from Lufaso MW, Woodward PM [2001] Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Cryst B57:725–738)

  • Goodenough JB (1960) Direct cation–cation interactions in several oxides. Phys Rev 117:1442–1451

    Article  Google Scholar 

  • Harrison RJ, Becker U, Redfern AT (2000) Thermodynamics of the \(R\bar 3 \;\hbox{to}\; R\bar 3c\) phase transition in the ilmenite-hematite solid solution. Am Mineral 85:1694–1705

    Google Scholar 

  • Kidoh K, Tanaka K, Marumo F, Takei H (1984) Electron density distribution in ilmenite-type crystals. II. Manganese (II) titanium (IV) trioxide. Acta Crystallogr B40:329–332

    Article  Google Scholar 

  • Ko J, Prewitt C (1988) High-pressure phase transformation in MnTiO3 from the ilmenite to the LiNbO3 structure. Phys Chem Mineral 15:355–362

    Article  Google Scholar 

  • Kunz M, Brown ID (1995) Out-of-center distortions around octahedrally coordinated d0-transition metals. J Solid State Chem 115:395–406

    Article  Google Scholar 

  • Lerch M, Laqua W (1992) Zur thermodynamic und elektrischen Leitfähigkeit von NiTiO3und anderen oxidischen Phasen mit Ilmenit-structur. Z Anorg Allg Chem 610:57–63

    Article  Google Scholar 

  • Lerch M, Stüber C, Laqua W (1991) Aspekte eines Hochtemperatürgangs in NiTiO3. Z Anorg Allg Chem 594:167–179

    Article  Google Scholar 

  • Lerch M, Boysen H, Neder R, Frey F, Laqua W (1992) Neutron scattering investigation of the high temperature phase transition in NiTiO3. J Phys Chem Solids 53:1153–1156

    Article  Google Scholar 

  • Liferovich RP, Mitchell RH (2004) Geikielite-ecandrewsite solid solutions: synthesis and crystal structures of the Mg1-x Zn x TiO3 (0 ≤x ≤ 0.8) series. Acta Crystallogr B60:496–501

    Article  PubMed  Google Scholar 

  • Linton JA, Fei Y, Navrotsky A (1999) The MgTiO3-FeTiO3 join at high pressure and temperature. Am Mineral 84:1595–1603

    Google Scholar 

  • Mitchell RH (2002) Perovskites: Modern and Ancient. Almaz Press, Thunder Bay, pp 318 (http://www.almazpress.com)

  • Mitchell RH, Liferovich RP (2004) Pyrophanite–ecandrewsite solid solution, part II: synthetic Mn1-x Zn x TiO3 (0.1≤x≤ 0.8) series and its crystal structure characteristics. Can Mineral 42:1871–1880

    Article  Google Scholar 

  • Mitchell RH, Ross KC, Potter EG (2004) Crystal structures of CsFe2S3 and RbFe2S3: synthetic analogs of rasvumite KFe2S3. J Solid State Chem 177:1867–1872

    Article  Google Scholar 

  • Ohgaki M, Tanaka K, Marumoto F, Takei H (1988) Electron density distribution in ilmenite-type crystals III. Nickel (II) titanium (IV) trioxide, NiTiO3. Mineral J (Japan) 14:133–144

    Google Scholar 

  • Orgel LE (1960) An introduction to the transition-metal chemistry ligand-field theory. Methuen, London, p 180

    Google Scholar 

  • Raymond KN, Wenk HR (1971) Lunar ilmenite (Refinement of the crystal structure). Contrib Mineral Petrol 30:135–140

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Rodriguez-Carvajal JJ (1990) “FULLPROF” program: Rietveld pattern matching analysis of powder patterns. ILL, Grenoble

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  Google Scholar 

  • Syono Y, Akimoto S, Ishikawa Y, Endoh Y (1969) A new high pressure phase of MnTiO3 and its magnetic property. J Phys Chem Solids 30:1665–1672

    Article  Google Scholar 

  • Wechsler BA, Prewitt C (1984) Crystal structure of ilmenite (FeTiO3) at high temperature and high pressure. Am Mineral 69:176–185

    Google Scholar 

  • Young RA (ed) (1995) The Rietveld method. Oxford University Press Inc, New York, p 298

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council of Canada and Lakehead University (Canada). We thank Allan MacKenzie for assistance with analytical work, and Anne Hammond for sample preparation. The authors are grateful to Dr. K. Garbev and an anonymous reviewer whose constructive criticism resulted in improvements to the initial version of this work. The authors also would like to thank Dr. Catherine McCammon for editorial care in handling of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger H. Mitchell.

Appendix 1

Appendix 1

Selected bond lengths (Å) and bond angles (°) of synthetic titanates at ambient conditions

 

 

 

1

2

3

4

5

6

AO6 octahedron

A-O1

 

Å

2.100(4)

2.085(5)

2.046(5)

2.045(5)

2.052(3)

2.059(4)

A-O1

 

Å

2.292(5)

2.197(6)

2.212(6)

2.197(5)

2.139(3)

2.117(4)

3×O–A–O

 

°

73.01

75.45

75.78

76.13

78.25

78.25

3×O–A–O

 

°

91.61

91.08

90.12

90.75

90.34

90.35

3×O–A–O

 

°

88.45

89.12

87.83

89.47

89.21

89.94

3×O–A–O

 

°

103.06

101.44

102.96

100.99

100.11

99.50

3×O–A–O

 

°

158.57

161.54

160.48

162.38

164.16

164.97

TiO6 octahedron

3×Ti-O1

 

Å

1.876(4)

1.862(5)

1.863(5)

1.850(5)

1.856(3)

1.858(4)

3×Ti-O1

 

Å

2.086(5)

2.084(5)

2.103(6)

2.082(5)

2.096(3)

2.079(4)

3×O–Ti–O

 

°

162.59

161.37

162.53

162.23

162.07

161.47

3×O–Ti–O

 

°

81.04

80.37

80.47

81.19

80.16

79.98

3×O–Ti–O

 

°

81.63

81.32

82.40

81.70

82.59

82.24

3×O–Ti–O

 

°

94.12

93.20

93.34

91.47

92.13

91.84

3×O–Ti–O

 

°

101.92

103.16

102.08

103.54

102.98

103.59

A–Ti

 

Å

3.035

2.945

2.960

2.917

2.867

2.843

A-A

a

Å

3.065

3.001

3.010

2.982

2.955

2.944

A-A

b

Å

3.993

4.053

3.975

4.010

4.106

4.120

Ti–Ti

a

Å

3.015

2.996

2.988

2.978

2.973

2.969

Ti–Ti

b

Å

4.223

4.076

4.077

4.030

4.010

3.985

O–O

c

Å

2.728

2.689

2.717

2.709

2.699

2.672

O–O

d

Å

3.287

3.228

3.201

3.156

3.146

3.143

O–O

e

Å

3.152

3.058

3.016

3.021

2.973

2.962

O–O

f

Å

3.066

3.006

2.955

2.988

2.944

2.952

O–O

g

Å

2.915

2.917

2.897

2.907

2.904

2.920

O–O

h

Å

2.580

2.576

2.619

2.578

2.614

2.594

O–O

i

Å

2.904

2.870

2.890

2.820

2.851

2.832

Ti–O–A

j

°

119.31

119.25

120.05

120.37

120.62

120.00

A–O–A

k

°

88.38

89.92

89.88

89.25

89.66

89.65

Ti–O–Ti

l

°

98.96

98.67

97.60

98.30

97.41

97.76

Ti–O–A

m

°

126.21

127.87

126.94

128.50

129.05

129.80

Ti–O–A

n

°

87.61

86.88

86.60

85.90

85.20

85.31

Ti–O–A

o

°

136.64

135.56

135.64

134.08

134.48

134.19

  1. 1 MnTiO3; 2 Ni1/2Mn1/2TiO3; 3 Ni1/4Mn1/4Zn1/4Mg1/4TiO3; 4 Ni1/3Zn1/3Mg1/3TiO3; 5 Ni1/2Mg1/2TiO3; 6 NiTiO3
  2. The metal–metal distances: a across shared edge between adjacent metal sites; b across vacant octahedral position
  3. The oxygen–oxygen distances: c A-Ti shared face; d A site, face opposite the shared face; e A site, shared edge; f A site, unshared edge; g Ti site, face opposite the shared face; h Ti site, shared edge; i Ti site, unshared edge
  4. Framework angles: j, m, and o at the shared vertex; k and l at the shared edge; n shared face

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liferovich, R.P., Mitchell, R.H. Rhombohedral ilmenite group nickel titanates with Zn, Mg, and Mn: synthesis and crystal structures. Phys Chem Minerals 32, 442–449 (2005). https://doi.org/10.1007/s00269-005-0020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0020-7

Keywords

Navigation