Skip to main content
Log in

Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

X-ray absorption spectroscopy at the Mg K-edge is used to obtain information on magnesium environment in minerals, silicate and alumino-silicate glasses. First-principles XANES calculations are performed for minerals using a plane-wave density functional formalism with core-hole effects treated in a supercell approach. The good agreement obtained between experimental and theoretical spectra provides useful information to interpret the spectral features. With the help of calculation, the position of the first peak of XANES spectra is related to both coordination and polyhedron distortion changes. In alumino-silicate glasses, magnesium is found to be mainly 5-fold coordinated to oxygen whatever the aluminum saturation index value. In silicate glasses, magnesium coordination increases from 4 in Cs-, Rb- and K-bearing glasses to 5 in Na- and Li-bearing glasses but remains equal as the polymerization degree of the glass varies. The variation of the C feature (position and intensity) is strongly related to the alkali type providing information on the medium range order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Calculations were performed with PARATEC (PARAllel Total Energy Code) by B. Pfrommer, D. Raczkowski, A. Canning, S.G. Louie, Lawrence Berkeley National Laboratory (with contributions from F. Mauri, M. Cote, Y. Yoon, Ch. Pickard and P. Haynes). For more information see http://www.nersc.gov/projects/paratec.

References

  • Andrault D, Neuville DR, Flank A-M, Wang Y (1998) Cation sites in Al-rich MgSiO3 perovskites. Am Mineral 83:1045–1053

    Google Scholar 

  • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71

    Article  Google Scholar 

  • Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  • Boström D (1987) Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. Am Mineral 72:965–972

    Google Scholar 

  • Branda F, Buri A, Caferra D, Marotta A (1983) The effect of mixing of network-modifiers on the transformation temperature of silicate glasses. J Non-Cryst Solids 54:193–198

    Article  Google Scholar 

  • Brown GE Jr, Farges F, Calas G (1995) X-ray scattering and X-ray spectroscopy studies of silicate melts. Rev Mineral 32:317–410

    Google Scholar 

  • Brunet F, Vielzeuf D (1996) The farringtonite/Mg3(PO4)2-II transformation: a new curve for pressure calibration in piston-cylinder apparatus. Eur J Mineral 8:221–468

    Google Scholar 

  • Cabaret D, Sainctavit P, Ildefonse P, Flank A-M (1998) Full multiple scattering calculations of the X-ray absorption near edge structure at the magnesium K-edge in pyroxene. Am Mineral 83:300–304

    Google Scholar 

  • Cabaret D, Le Grand M, Ramos A, Flank A-M, Rossano S, Galoisy L, Calas G, Ghaleb D (2001) Medium range structure in borosilicate glasses from Si K-edge XANES: a combined approach based on multiple scattering and molecular dynamics calculations. J Non-Cryst Solids 289:1–8

    Article  Google Scholar 

  • Cabaret D, Gaudry E, Taillefumier M, Sainctavit F, Mauri F (2005) XANES calculation with an efficient "non muffin-tin" method: application to the angular dependence of the Al K-edge in corundum. Physica Scripta T115:131–133

    Article  Google Scholar 

  • Cabaret D, Mauri F, Henderson GS (2007) Oxygen K-edge XANES of germanates investigated using first-principles calculations. Phys Rev B 75:184205

    Article  Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  Google Scholar 

  • Cormier L, Neuville DR (2004) Ca and Na environments in Na2O-CaO-Al2O3-SiO2 glasses: influence of cation mixing and cation-network interactions. Chem Geol 213:103–113

    Article  Google Scholar 

  • Curti E (2003) Glass dissolution parameters: update for "Entsorgungsnachweis". Technical Report NTB pp 02–21

  • de Groot FMF (2007) Novel techniques and approaches to unravel the nature of X-ray absorption spectra. In: Hedman B, Pianetta P (eds) X-ray absorption fine structure—XAFS13, AIP conference proceedings, vol 882, pp 37–43

  • de Wispelaere S, Cabaret D, Levelut C, Rossano S, Flank A-M, Parent P, Farges F (2004) Na-, Al-, and Si K-edge XANES study of sodium silicate and sodium aluminosilicate glasses: influence of the glass surface. Chem Geol 213:63–70

    Article  Google Scholar 

  • Dingwell DB (1995) Relaxation in silicate melts: some applications. Rev Mineral 32:21–66

    Google Scholar 

  • Dingwell DB, Paris E, Seifert F, Mottana A, and Romano C (1994) X-ray absorption study of Ti-bearing silicate glasses. Phys Chem Miner 21:501–509

    Article  Google Scholar 

  • Farges F (2001) Crystal chemistry of iron in natural grandidierites: an X-ray absorption fine-structure spectroscopy study. Phys Chem Miner 28:619–629

    Article  Google Scholar 

  • Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a molecular dynamics, combined XAFS spectroscopy, and bond valence study. J Non-Cryst Solids 344:176–188

    Article  Google Scholar 

  • Fiske PS, Stebbins JF (1994) The structural role of Mg in silicate liquids: a high-temperature 25Mg, 23Na and 29Si NMR study. Am Mineral 79:848–861

    Google Scholar 

  • Flank A-M, Cauchon G, Lagarde P, Bac S, Janousch M, Wetter R, Dubuisson J-M, Idri M, Langlois F, Moreno T, Vantelon D (2006) LUCIA, a microfocus soft XAS beamline. Nucl Instr Meth B 246:269–274

    Article  Google Scholar 

  • Galoisy L, Calas G (1993) Structural environment of nickel in silicate glass/melt systems: Part 1. spectroscopic determination of coordination states. Geochim Cosmochim Acta 57:3613–3626

    Article  Google Scholar 

  • George AM, Stebbins JF (1998) Structure and dynamics of magnesium in silicate melts: a high-temperature 25Mg NMR study. Am Mineral 83:1022–1029

    Google Scholar 

  • Guignard M, Cormier L (2008) Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: a study coupling neutron and X-ray diffraction and reverse monte carlo modeling. Chem Geol (in press)

  • Guili G, Pratesi G, Corazza M, Cipriani C (2000) Aluminium coordinantion in tektites: a XANES study. Am Mineral 85:1172–1174

    Google Scholar 

  • Guillot B, Sator N (2007) A computer simulation study of natural silicate melts. Part I : low pressure properties. Geochim Cosmochim Acta 71:1249–1265

    Article  Google Scholar 

  • Haskel D (1999) FLUO package. http://www.aps.anl.gov/xfd/people/haskel/fluo.html

  • Hawthorne RM, Ito J (1977) Synthesis and crystal-structure refinement of transition-metal orthopyroxenes I: orthoenstatite and (Mg, Mn, Co) orthopyroxene. Can Mineral 15:321–338

    Google Scholar 

  • Hazen RM, Finger LW (1989) High-pressure crystal chemistry of andradite and pyrope: revised procedures for high-pressure diffraction experiments. Am Mineral 74:352–359

    Google Scholar 

  • Henderson GS (1995) A Si K-edge EXAFS/XANES study of sodium silicate glasses. J Non-Cryst Solids 183:43–50

    Article  Google Scholar 

  • Hochella MF Jr, Brown GE Jr, Ross FK, Gibbs GV (1979) High-temperature crystal chemistry of hydrous Mg- and Fe-cordierite. Min Mag 64:337–351

    Google Scholar 

  • Ildefonse P, Calas G, Flank A-M, Lagarde P (1995) Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems. Nucl Instr Meth B 97:172–175

    Article  Google Scholar 

  • Ildefonse P, Cabaret D, Sainctavit P, Calas G, Flank A-M, Lagarde P (1998) Local aluminium environment in Earth’s surface minerals. Phys Chem Miner 25:112–121

    Article  Google Scholar 

  • Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EI, Brown GE Jr (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in silicate melts. Geochimica and Cosmochimica Acta 69:4315–4332

    Article  Google Scholar 

  • Jallot E (2003) Role of magnesium during spontaneous formation of a calcium phosphate layer at the periphery of a bioactive glass coating doped with MgO. Appl Surf Sci 211:89–95

    Article  Google Scholar 

  • Kas JJ, Sorini P, Prange MP, Cambell LW, Soininen JA, Rehr JJ (2007) Many-pole model of inelastic losses in X-ray absorption spectra. Phys Rev B 76:195116–195126

    Article  Google Scholar 

  • Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48(20):1425–1428 doi:10.1103/PhysRevLett.48.1425

    Article  Google Scholar 

  • Koenderink GH, Brzesowsky RH, Balkenende AR (2000) Effect of the initial stages of the leaching on the surface of the alkaline earth sodium silicate glasses. J Non-Cryst Solids 262:80–98

    Article  Google Scholar 

  • Kroeker S, Stebbins JF (2000) Magnesium coordination environments in glasses and minerals: new insight from high-field magnesium-25 MAS NMR. Am Mineral 85:1459–1464

    Google Scholar 

  • Kubicki JD, Lasaga AC (1991) Molecular dynamics simulation of pressure and temperature effects on MgSiO, and Mg2 SiO3 melts and glasses. Phys Chem Miner 17:661–673

    Article  Google Scholar 

  • Lefrère Y (2002) Proprités d’absorption optique du Fe2+ et du Fe3+ dans des verres d’intérêt industriel: mesure, modélisation et implications structurales. PhD thesis, Université Denis Diderot

  • Levelut C, Cabaret D, Benoit M, Jund P, Flank A-M (2001) Multiple scattering calculations of the XANES Si K-edge in amorphous silica. J Non-Cryst Solids 293-295:100–104

    Article  Google Scholar 

  • Li D, Bancroft GM, Fleet ME, Feng XH (1995) Silicon K-edge XANES spectra of silicate minerals. Phys Chem Miner 22:115–122

    Google Scholar 

  • Li D, Peng M, Murata T (1999) Coordination and local structure of magnesium in silicate minerals and glasses: Mg K-edge XANES study. Can Mineral 37:199–206

    Google Scholar 

  • Mizoguchia T, Tatsumi K, Tanaka I (2006) Peak assignments of ELNES and XANES using overlap population diagrams. Ultramicroscopy 106:1120–1128

    Article  Google Scholar 

  • Mo S-D, Ching W-Y (2000) Ab initio calculation of the core-hole effect in the electron energy-loss near-edge structure. Phys Rev B 62:7901–7907

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Mysen B, Richet P (2005) Silicate glasses and melts: properties and structure, vol 10, 2 edn. Elsevier

  • Natoli CR (1984) Distance dependence of continuum and bound state of excitonic resonances in X-ray absorption near-edge structures (XANES). In: Hodgson KO, Herman B, PennerHahn JE (eds) EXAFS and Near Edge Structure III. Springer Proceedings on Physics, vol 2, pp 38–42

  • Neuville DR, Cormier L, Flank A-M, Briois V, Massiot D (2004) Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy. Chem Geol 213:153–163

    Article  Google Scholar 

  • Nord AG, Kierkegaard P (1968) The crystal structure of Mg3(PO4)2. Acta Chem Scand 22:1466–1474

    Google Scholar 

  • O’Neill HS, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181

    Article  Google Scholar 

  • Perdikatsis B, Burzlaff H (1981) Strukturverfeinerung am Talk Mg3[(OH)2Si4O10]. Zeitschrift fur Kristallographie 156:177–186

    Google Scholar 

  • Pouchou J-L, Pichoir F (1984) Extension of quantitative possibilities of microanalysis by a new formulation of matrix effects. Journal de Physique (Paris), Colloque 45(2):17–20

    Google Scholar 

  • Quartieri S, Boscherini F, Dalconi C, Iezzi G, Meneghini C, Oberti R (2008) Magnesium K-edge EXAFS study of bond-length behavior in synthetic pyrope-grossular garnet solid solutions. Am Mineral 93:495–498

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Rossano S, Behrens H, Wilke M (2008) Advanced analyses of 57Fe Mössbauer data of alumino-silicate glasses. Phys Chem Miner 35:77–93

    Article  Google Scholar 

  • Sánchez del Río M, Suárez M, García Romero, Alianelli L, Felici R, Martinetto EP, Dooryhée E, Reyes-Valerio C, Borgatti F, Doyle B, Giglia A, Mahne N, Pedio M, Nannarone S (2005) Mg K-edge XANES of sepiolite and palygorskite. Nucl Instr Meth Phys Res B 238:55–60

    Article  Google Scholar 

  • Sharp T, Wu Z, Seifert F, Poe B, Doerr M, Paris E (1996) Distinction between six- and fourfold coordinated silicon in SiO2 polymorphs via electron loss near edge structure (ELNES) spectroscopy. Phys Chem Miner 23:17–24

    Article  Google Scholar 

  • Sharp ZD, Hazen RM, Finger LW (1987) High-pressure crystal chemistry of monticellite, CaMgSiO4. Am Mineral 72:748–755

    Google Scholar 

  • Shimoda K, Tobu Y, Hatakeyama M, Nemoto T, Saito K (2007) Structural investigation of Mg local environments in silicate glasses by ultra-high field 25Mg 3QMAS NMR spectroscopy. Am Mineral 92:695–698

    Article  Google Scholar 

  • Shiono T, Minagi T, Aritani H, Okumura S, Nishida T (2002) Mg K-edge XANES study of crystallization of MgAl2O4 spinel prepared from a mixture of Al(OH)3 and Mg(OH)2 activated mechanically by wet milling. UVSOR Act Rep 2001:192–193

    Google Scholar 

  • Stephenson DA, Moore PB (1968) The crystal structure of grandidierite, (Mg,Fe)Al3SiO9. Acta Cryst B 24:1518–1522

    Article  Google Scholar 

  • Taillefumier M, Cabaret D, Flank A-M, Mauri F (2002) X-ray absorption near-edge structure calculations with the pseudopotentials: application to the K edge in diamond and alpha-quartz. Phys Rev B 66:195107(1–8)

    Google Scholar 

  • Thompson A, Attwood D, Gullikson E, Howells M, Kim K-J, Kirz J, Kortright J, Lindau I, Pianetta P, Robinson A, Scofield J, Underwood J, Vaughan D, Williams G, Winick H (2001) X-ray data booklet. LNBL, Berkeley, USA, 2001. Center for X-ray Optics and Advanced Light Source

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39

    Article  Google Scholar 

  • Trcera N, Cabaret D, Farges F, Flank A-M, Lagarde P, Rossano S (2007) Mg K-edge XANES spectra in crystals and oxide glasses: experimental vs. theoretical approaches. In: Hedman B, Pianetta P (eds) X-ray absorption fine structure—XAFS13, AIP Conference Proceedings, vol 882, pp 226–228

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys Rev B 43(11):8861–8869

    Article  Google Scholar 

  • Wilding MC, Benmore CJ, Tangeman JA, Sampath S (2004) Coordination changes in magnesium silicate glasses. Europhys Lett 67(2):212–218

    Article  Google Scholar 

  • Winterer M (1997) XAFS—a data analysis program for materials science. J Phys IV 7 C2:243–244

    Article  Google Scholar 

  • Wu ZY, Mottana A, Paris E, Giuli G, Cibin G (2004) X-ray absorption near-edge structure at the Mg K-egde in olivine minerals. Phys Rev B 69:104106

    Google Scholar 

  • Yamanaka T, Takeuchi Y (1983) Order-disorder transition in MgAl2O3 spinel at high temperatures up to 1700°C. Zeitschrift für Kristallographie 165:65–78

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sylvie Poissonnet for the recording of the microprobe analysis perforled at the CEA. We are grateful to Fabrice Brunet from Ecole Normale Supérieure de Paris for providing us the farringtonite sample. The staff of Swiss Light Source (SLS) is thanked for their assitance and technical support during Mg K-edge measurements. The theoretical part of this work was supported by the French computational institut of Orsay (Institut du Développement et des Ressources en Informatique Scientifique) under Projects Nos. 62015 and 72015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Rossano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trcera, N., Cabaret, D., Rossano, S. et al. Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure. Phys Chem Minerals 36, 241–257 (2009). https://doi.org/10.1007/s00269-008-0273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0273-z

Keywords

Navigation