Skip to main content
Log in

The oxidation state and microstructural environment of transition metals (V, Co, and Ni) in magnetite: an XAFS study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Transition metal-substituted magnetite minerals have attracted increasing attention for their wide application in industry and environmental protection. In this study, the valence and atomic environment of some substituting metals in magnetites (Fe3−x M x O4, M = V, Co, and Ni) were investigated using X-ray absorption fine structure spectroscopy. The results deduced from X-ray absorption near-edge structure spectroscopy indicated that the valences of V, Co, and Ni in Fe3−x M x O4 were +3, +2, and +2, respectively. The valences did not change as the substitution extent increased. Extended X-ray absorption fine structure spectroscopy suggested that the substituting cations occupied octahedral sites in the magnetite structure. The M–O and M–M/Fe distances were consistent with the Feoct–O and Feoct–Fe distances, respectively, in the magnetite (Fe3O4) structure. The occupancy of the substituting cations was assessed by crystal-field theory. We also considered the relationship between the chemical environment of substituting cations and their effects on the physicochemical properties of magnetite, including thermal stability, surface properties, and catalytic reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38(13):3705–3712. doi:10.1021/Es035121o

    Article  Google Scholar 

  • Brabers VAM, Walz F, Kronmuller H (1998) Impurity effects upon the Verwey transition in magnetite. Phys Rev B 58(21):14163–14166. doi:10.1103/PhysRevB.58.14163

    Article  Google Scholar 

  • Carta D, Mountjoy G, Navarra G, Casula MF, Loche D, Marras S, Corrias A (2007) X-ray absorption investigation of the formation of cobalt ferrite nanoparticles in an aerogel silica matrix. J Phys Chem C 111(17):6308–6317. doi:10.1021/Jp0708805

    Article  Google Scholar 

  • Carta D, Casula MF, Mountjoy G, Corrias A (2008a) Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys Chem Chem Phys 10(21):3108–3117. doi:10.1039/B800359a

    Article  Google Scholar 

  • Carta D, Loche D, Mountjoy G, Navarra G, Corrias A (2008b) NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an X-ray absorption study. J Phys Chem C 112(40):15623–15630. doi:10.1021/Jp803982k

    Article  Google Scholar 

  • Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T (2002) Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations. J Phys Chem B 106(34):8539–8546. doi:10.1021/Jp025544x

    Article  Google Scholar 

  • Choi HC, Lee SY, Kim SB, Kim MG, Lee MK, Shin HJ, Lee JS (2002) Local structural characterization for electrochemical insertion-extraction of lithium into CoO with X-ray absorption spectroscopy. J Phys Chem B 106(36):9252–9260. doi:10.1021/Jp0205968

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, New York

    Book  Google Scholar 

  • Costa RCC, de Fatima M, Lelis F, Oliveira LCA, Fabris JD, Ardisson JD, Rios RRVA, Silva CN, Lago RM (2003) Remarkable effect of Co and Mn on the activity of Fe3−x M x O4 promoted oxidation of organic contaminants in aqueous medium with H2O2. Catal Commun 4(10):525–529. doi:10.1016/j.catcom.2003.08.002

    Article  Google Scholar 

  • Costa RCC, Lelis MFF, Oliveira LCA, Fabris JD, Ardisson JD, Rios RRVA, Silva CN, Lago RM (2006) Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J Hazard Mater 129(1–3):171–178. doi:10.1016/j.jhazmat.2005.08.028

    Article  Google Scholar 

  • Dunitz JD, Orgel LE (1957) Electronic properties of transition-metal oxides-ii: cation distribution amongst octahedral and tetrahedral sites. J Phys Chem Solids 3(3–4):318–323. doi:10.1016/0022-3697(57)90035-5

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46(4):319–335. doi:10.1007/s00126-011-0334-y

    Article  Google Scholar 

  • Farges F, Munoz M, Siewert R, Malavergne V, Brown GE, Behrens H, Nowak M, Petit PE (2001) Transition elements in water-bearing silicate glasses/melts. Part II. Ni in water-bearing glasses. Geochim Cosmochim Acta 65(10):1679–1693. doi:10.1016/S0016-7037(00)00624-4

    Article  Google Scholar 

  • Kester E, Gillot B, Perriat P, Dufour P, Villette C, Tailhades P, Rousset A (1996) Thermal behavior and cation distribution of submicron copper ferrite spinels Cu x Fe3−x O4 (0 ≤ x≤0.5) studied by DTG, FtIR, and XPS. J Solid State Chem 126(1):7–14. doi:10.1006/jssc.1996.0302

    Article  Google Scholar 

  • Kumari N, Kumar V, Singh SK (2014) Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles. Ceram Int 40(8):12199–12205

    Article  Google Scholar 

  • Latta DE, Pearce CI, Rosso KM, Kemner KM, Boyanov MI (2013) Reaction of U-VI with titanium-substituted magnetite: influence of Ti on U-IV Speciation. Environ Sci Technol 47(9):4121–4130. doi:10.1021/Es303383n

    Article  Google Scholar 

  • Liang XL, Zhu SY, Zhong YH, Zhu JX, Yuan P, He HP, Zhang J (2010) The remarkable effect of vanadium doping on the adsorption and catalytic activity of magnetite in the decolorization of methylene blue. Appl Catal B 97(1):151–159

    Article  Google Scholar 

  • Liang XL, He ZS, Zhong YH, Tan W, He HP, Yuan P, Zhu JX, Zhang J (2013a) The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: in interfacial view. Colloids Surf A Physicochem Eng Asp 435:28–35. doi:10.1016/j.colsurfa.2012.12.038

    Article  Google Scholar 

  • Liang XL, Zhong YH, Zhu SY, He HP, Yuan P, Zhu JX, Jiang Z (2013b) The valence and site occupancy of substituting metals in magnetite spinel structure Fe3−x M x O4 (M = Cr, Mn, Co and Ni) and their influence on thermal stability: an XANES and TG-DSC investigation. Solid State Sci 15:115–122. doi:10.1016/j.solidstatesciences.2012.10.005

    Article  Google Scholar 

  • Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82(10):1422–1430. doi:10.1016/j.chemosphere.2010.11.052

    Article  Google Scholar 

  • Magalhaes F, Pereira MC, Botrel SEC, Fabris JD, Macedo WA, Mendonca R, Lago RM, Oliveira LCA (2007) Cr-containing magnetites Fe3−x Cr x O4: the role of Cr3+ and Fe2+ on the stability and reactivity towards H2O2 reactions. Appl Catal A Gen 332(1):115–123. doi:10.1016/j.apcata.2007.08.002

    Article  Google Scholar 

  • Mcclure DS (1957) The distribution of transition metal cations in spinels. J Phys Chem Solids 3(3–4):311–317. doi:10.1016/0022-3697(57)90034-3

    Article  Google Scholar 

  • Nohair M, Aymes D, Perriat P, Gillot B (1995) Infrared spectra-structure correlation study of vanadium–iron spinels and of their oxidation-products. Vib Spectrosc 9(2):181–190. doi:10.1016/0924-2031(95)00004-E

    Article  Google Scholar 

  • Oliveira LCA, Fabris JD, Rios RRVA, Mussel WN, Lago RM (2004) Fe3-x Mn x O4 catalysts: phase transformations and carbon monoxide oxidation. Appl Catal A Gen 259(2):253–259. doi:10.1016/j.apcata.2003.09.033

    Article  Google Scholar 

  • Ounnunkad S, Winotai P, Phanichphant S (2006) Cation distribution and magnetic behavior of Mg1−x Zn x Fe2O4 ceramics monitored by Mossbauer spectroscopy. J Electroceram 16(4):363–368. doi:10.1007/s10832-006-9880-6

    Article  Google Scholar 

  • Pandya KI (1994) Multiple-scattering effects in X-ray-absorption fine-structure—chromium in a tetrahedral configuration. Phys Rev B 50(21):15509–15515. doi:10.1103/PhysRevB.50.15509

    Article  Google Scholar 

  • Pantelouris A, Modrow H, Pantelouris M, Hormes J, Reinen D (2004) The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds. Chem Phys 300(1–3):13–22. doi:10.1016/j.jchemphys.2003.12.017

    Article  Google Scholar 

  • Pearce CI, Qafoku O, Liu J, Arenholz E, Heald SM, Kukkadapu RK, Gorski CA, Henderson CMB, Rosso KM (2012) Synthesis and properties of titanomagnetite (Fe3−x Ti x O4) nanoparticles: a tunable solid-state Fe(II/III) redox system. J Colloid Interface Sci 387:24–38. doi:10.1016/j.jcis.2012.06.092

    Article  Google Scholar 

  • Peterson ML, Brown GE, Parks GA, Stein CL (1997) Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES results. Geochim Cosmochim Acta 61(16):3399–3412. doi:10.1016/S0016-7037(97)00165-8

    Article  Google Scholar 

  • Ramankutty CG, Sugunan S (2001) Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods. Appl Catal A Gen 218(1–2):39–51. doi:10.1016/S0926-860x(01)00610-X

    Article  Google Scholar 

  • Salazar-Alvarez G, Olsson RT, Sort J, Macedo WAA, Ardisson JD, Baro MD, Gedde UW, Nogues J (2007) Enhanced coercivity in Co-rich near-stoichiometric CoFe3−x O4+δ nanoparticles prepared in large batches. Chem Mater 19(20):4957–4963. doi:10.1021/Cm070827t

    Article  Google Scholar 

  • Sarda C, Rousset A (1993) Thermal-stability of barium-doped iron-oxides with spinel structure. Thermochim Acta 222(1):21–31. doi:10.1016/0040-6031(93)80535-I

    Article  Google Scholar 

  • Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82(12):3279–3292

    Article  Google Scholar 

  • Sorescu M, Grabias A, Tarabasanu-Mihaila D, Diamandescu L (2001) From magnetite to cobalt ferrite. J Mater Synth Process 9(3):119–123. doi:10.1023/A:1013241312932

    Article  Google Scholar 

  • Sorescu M, Grabias A, Tarabasanu-Mihaila D, Diamandescu L (2002) Influence of cobalt and nickel substitutions on populations, hyperfine fields, and hysteresis phenomenon in magnetite. J Appl Phys 91(10):8135–8137. doi:10.1063/1.1456436

    Article  Google Scholar 

  • Su SN, Guo WL, Leng YQ, Yi CL, Ma ZM (2013) Heterogeneous activation of Oxone by Co x Fe3−x O4 nanocatalysts for degradation of rhodamine B. J Hazard Mater 244:736–742. doi:10.1016/j.jhazmat.2012.11.005

    Article  Google Scholar 

  • Vaingankar AS, Khasbardar BV, Patil RN (1980) X-ray spectroscopic study of cobalt ferrite. J Phys F Met Phys 10(7):1615–1619. doi:10.1088/0305-4608/10/7/027

    Article  Google Scholar 

  • Varshney D, Yogi A (2010) Structural and transport properties of stoichiometric and Cu2+-doped magnetite: Fe3−x Cu x O4. Mater Chem Phys 123(2–3):434–438. doi:10.1016/j.matchemphys.2010.04.036

    Article  Google Scholar 

  • Waychunas GA, Apted MJ, Brown GE (1983) X-ray K-edge absorption-spectra of Fe minerals and model compounds: near-edge structure. Phys Chem Miner 10(1):1–9. doi:10.1007/Bf01204319

    Article  Google Scholar 

  • Zhang H, Fu H, Zhang DB (2009) Degradation of CI acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process. J Hazard Mater 172(2–3):654–660. doi:10.1016/j.jhazmat.2009.07.047

    Article  Google Scholar 

  • Zhang MY, Pan G, Zhao DY, He GZ (2011) XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate. Environ Pollut 159(12):3509–3514. doi:10.1016/j.envpol.2011.08.017

    Article  Google Scholar 

  • Zhao R, Jia K, Wei JJ, Pu JX, Liu XB (2010) Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater Lett 64(3):457–459. doi:10.1016/j.matlet.2009.11.043

    Article  Google Scholar 

  • Zhong YH, Liang XL, He ZS, Tan W, Zhu JX, Yuan P, Zhu RL, He HP (2014) The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation. Appl Catal B Environ 150:612–618. doi:10.1016/j.apcatb.2014.01.007

    Article  Google Scholar 

  • Zhu HY, Zhang S, Huang YX, Wu LH, Sun SH (2013) Monodisperse MxFe3−xO4 (M = Fe, Cu Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 13(6):2947–2951. doi:10.1021/Nl401325u

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Beijing Synchrotron Radiation Facility (BSRF) for providing us the beam time for the XAFS measurement. We gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. 41172045 and 41302026) and Natural Science Foundation of Guangdong Province, China (Grant No. S2012010009598) for financial support. This is contribution No. IS-1990 from GIG CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongping He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., He, Z., Tan, W. et al. The oxidation state and microstructural environment of transition metals (V, Co, and Ni) in magnetite: an XAFS study. Phys Chem Minerals 42, 373–383 (2015). https://doi.org/10.1007/s00269-014-0727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0727-4

Keywords

Navigation