Skip to main content
Log in

Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient and microhardness

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Sphalerite crystals (Fe,Zn)S containing up to 56 mol% of FeS have been synthesized by gas transport method and in molten salts in the temperature range 340–780 °C at various sulfur fugacities. It is shown that lattice parameter of Fe-bearing sphalerite changes with temperature and composition (x, mol% FeS in sphalerite) according to parabolic equation: \(a\, \pm \,0.0004/{\text{\AA}} = \, \left( {5.4099\, \pm \,0.0008} \right) \, + \, \left( {5.82\, \pm \,0.36} \right) \cdot 10^{ - 4} \cdot x \, + \, \left( { - 4.7\, \pm \,0.6} \right) \cdot 10^{ - 6} \cdot x^{2} + \, \left( {4.2\, \pm \,0.4} \right) \cdot 10^{ - 5} \cdot \left( {T{-} \, 298.15{\text{ K}}} \right)\). This relationship is independent from synthesis temperature and sulfur fugacity. Temperature expansion coefficient is independent from temperature or composition of the sphalerite solid solution. It is shown that increase in Fe content of the synthesis charge leads to larger deviations between the target and real composition of the obtained crystals. Vickers microhardness of sphalerite increases in the composition range 0–1 mol% of FeS, has broad maximum in the range 1–5 mol% and decreases at higher Fe content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Hereinafter—mol% of FeS.

References

  • Aswegen JTS, Verleger H (1960) Rontgenographische Untersuchung des Systems ZnS–FeS. Naturwissenschaften 47:131

    Article  Google Scholar 

  • Balabin AI, Sack RO (2000) Thermodynamics of (Zn, Fe)S sphalerite. A CVM approach with large basis clusters. Mineral Mag 64:923–943

    Article  Google Scholar 

  • Barton PB, Toulmin P (1966) Phase relations involving sphalerite in the Fe–Zn–S system. Econ Geol 61:815–849. doi:10.2113/gsecongeo.61.5.815

    Article  Google Scholar 

  • Boorman RS, Sutherland JK, Chernyshev LV (1971) New data on the sphalerite-pyrrhotite-pyrite solvus. Econ Geol 66:670–673. doi:10.2113/gsecongeo.66.4.670

    Article  Google Scholar 

  • Britvin SN, Bogdanova AN, Boldyreva MM, Aksenova GY (2008) Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: description and crystal structure. Am Miner 93:902–909. doi:10.2138/am.2008.2582

    Article  Google Scholar 

  • Chareev DA (2016) General principles of the synthesis of chalcogenides and pnictides in salt melts using a steady-state temperature gradient. Crystallogr Rep 61(3):506–511

    Article  Google Scholar 

  • Chareev DA, Volkova OS, Geringer NV et al (2016) Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient. Crystallogr Rep 61:672–681. doi:10.1134/S1063774516030068

    Google Scholar 

  • Chernyshev LV, Afonina GG, Berestennikov MI (1969) The lattice parameter of iron-bearing sphalerites synthesized under hydrothermal conditions. Geol Ore Depos 6:85–89

    Google Scholar 

  • de Médicis R (1970) Cubic FeS, a Metastable Iron Sulfide. Science 170:1191–1192. doi:10.1126/science.170.3963.1191

    Article  Google Scholar 

  • Di Benedetto F, Andreozzi GB, Bernardini GP et al (2005) Short-range order of Fe2+ in sphalerite by 57Fe Mössbauer spectroscopy and magnetic susceptibility. Phys Chem Miner 32:339–348. doi:10.1007/s00269-005-0002-9

    Article  Google Scholar 

  • Glazov VM, Vigdorovich VN (1962) Microhardenss of metals. Metallurgzidat, Moscow (in Russian)

    Google Scholar 

  • Henriques A (1956) The Vickers hardness of zincblende. Ark Miner Geol 2:283–297

    Google Scholar 

  • Kochubey DI, Laptev YV, Chareev DA, Valeev RG (2013) XAFS spectroscopy of sphalerite solid solution (FexZn1−xS). Bull Russ Acad Sci Phys 77:1296–1298

    Article  Google Scholar 

  • Kullerud G (1953) The FeS–ZnS System, a geological thermometer. Nor Geol Tidsskr 32:61–147

    Google Scholar 

  • Kullerud G, Yoder HS (1959) Pyrite stability relations in the Fe–S system. Econ Geol 54:533–572. doi:10.2113/gsecongeo.54.4.533

    Article  Google Scholar 

  • Lebedeva SI (1972) Typomorphic peculiarities of sphalerite from ore deposits of different formations. In: Typomorphism of minerals and its practical significance (in Russian). Moscow, pp 80–83

  • Lebedeva SI (1977) Microhardness of minerals. Nedra, Moscow (in Russian)

    Google Scholar 

  • Lepetit P, Bente K, Doering T, Luckhaus S (2003) Crystal chemistry of Fe-containing sphalerites. Phys Chem Miner 30:185–191. doi:10.1007/s00269-003-0306-6

    Article  Google Scholar 

  • Lusk J, Calder BO (2004) The composition of sphalerite and associated sulfides in reactions of the Cu–Fe–Zn–S, Fe–Zn–S and Cu–Fe–S systems at 1 bar and temperatures between 250 and 535 °C. Chem Geol 203:319–345. doi:10.1016/j.chemgeo.2003.10.011

    Article  Google Scholar 

  • Martín JD, Gil AS (2005) An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850°C and up to 1 GPa. Geochim Cosmochim Acta 69:995–1006. doi:10.1016/j.gca.2004.08.009

    Article  Google Scholar 

  • Osadchii EG, Gorbaty YE (2010) Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1−xS). Geochim Cosmochim Acta 74:568–573. doi:10.1016/j.gca.2009.10.022

    Article  Google Scholar 

  • Osadchii EG, Sorokin VI (1989) The stannite containing sulfide system. Nauka, Moscow (in Russian)

    Google Scholar 

  • Parker SG, Pinnell JE (1968) Molten flux growth of cubic zinc sulfide crystals. J Cryst Growth 3:490–495

    Article  Google Scholar 

  • Petukhov BV (2007) Anomalous mobility of dislocation kink-solitons in disordered solid solutions. Nonlinear world 5:242–259 (in Russian)

    Google Scholar 

  • Pring A, Tarantino SC, Tenailleau C, Etschmann B, Carpenter MA, Zhang M, Liu Y, Withers RL (2008) The crystal chemistry of Fe-bearing sphalerites: an infrared spectroscopic study. Am Mineral 93:591–597. doi:10.2138/am.2008.2610

    Article  Google Scholar 

  • Schäfer H (1963) Chemical transport reactions. Academic Press, New York

    Google Scholar 

  • Scott SD, Barnes HL (1971) Sphalerite Geothermometry and Geobarometry. Econ Geol 66:653–669. doi:10.2113/gsecongeo.66.4.653

    Article  Google Scholar 

  • Scott S, Barnes H (1972) Sphalerite–Wurtzite equilibria and stoichiometry. Geochim Cosmochim Acta 36:1275–1295. doi:10.1016/0016-7037(72)90049-X

    Article  Google Scholar 

  • Shadlun TN, Dmitrieva MT (1968) On the dependence of the lattice parameter from the content of isomorphic admixtures and the possibility of using X-ray analysis in determining the quantity of isomorphic iron in sphalerite (in Russian). Mineral Rev 22:116–131

    Google Scholar 

  • Shadlun T, Turpetko S (1970) On the dependence of the microhardness of the content of isomorphous iron in synthetic sphalerites. Dokl Akad Nauk 194:1412–1414

    Google Scholar 

  • Skinner BJ (1961) Unit cell edges of natural and synthetic sphalerites. Am Miner 46:1388–1411

    Google Scholar 

  • Takeno S, Zoka H, Niiharo T (1970) Metastable cubic iron sulfide, with special reference to mackinawite. Am Miner 55:1639–1649

    Google Scholar 

  • Toulmin P, Barton PB, Wiggins LB (1991) Commentary on the sphalerite geobarometer. Am Miner 76:1038–1051

    Google Scholar 

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge

    Google Scholar 

  • Vaughan DJ, Tossell JA (1980) The chemical bond and the properties of sulfide minerals. I. Zn, Fe and Cu in tetrahedral and triangular coordinations with sulfur. Can Mineral 18:157–163

    Google Scholar 

  • Wright K, Gale JD (2010) A first principles study of the distribution of iron in sphalerite. Geochim Cosmochim Acta 74:3514–3520. doi:10.1016/j.gca.2010.03.014

    Article  Google Scholar 

  • Young BB, Millman AP (1964) Microhardness and deformation characteristics of ore minerals. Trans Inst Min Met 73:437–466

    Google Scholar 

Download references

Acknowledgements

The authors thank T.N. Dokina for performing part of the X-ray studies and Dr. Petukhov B.V. for discussions of mechanical properties. The authors thank CKP FMI (Institute of Physical Chemistry and Electrochemistry RAS, Moscow) for providing access to EMPYREAN diffractometer. The work is supported by RFBR Grant No. 16-05-00938a, by the program 211 of the Russian Federation Government, agreement No. 02.A03.21.0006 and by the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy A. Chareev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chareev, D.A., Osadchii, V.O., Shiryaev, A.A. et al. Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient and microhardness. Phys Chem Minerals 44, 287–296 (2017). https://doi.org/10.1007/s00269-016-0856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0856-z

Keywords

Navigation