Skip to main content
Log in

Usefulness of MRI to Differentiate Between Temporary and Long-Term Coronary Artery Occlusion in a Minimally Invasive Model of Experimental Myocardial Infarction

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The surgical technique employed to determine an experimental ischemic damage is a major factor in the subsequent process of myocardial scar development. We set out to establish a minimally invasive porcine model of myocardial infarction using cardiac contrast-enhanced magnetic resonance imaging (ce-MRI) as the basic diagnostic tool. Twenty-seven domestic pigs were randomized to either temporary or permanent occlusion of the left anterior descending artery (LAD). Temporary occlusion was achieved by inflation of a percutaneous balloon in the left anterior descending artery directly beyond the second diagonal branch. Occlusion was maintained for 30 or 45 min, followed by reperfusion. Permanent occlusion was achieved via thrombin injection. Thirteen animals died peri- or postinterventionally due to arrhythmias. Fourteen animals survived the 30-min ischemia (four animals; group 1), the 45-min ischemia (six animals; group 2), or the permanent occlusion (4 animals; group 3). Coronary angiography and ce-MRI were performed 8 weeks after coronary occlusion to document the coronary flow grade and the size of myocardial scar tissue. The LAD was patent in all animals in groups 1 and 2, with normal TIMI flow; in group 3 animals, the LAD was totally occluded. Fibrosis of the left ventricle in group 1 (4.9 ± 4.4%; p = 0.008) and group 2 (9.4 ± 2.9%; p = 0.05) was significantly lower than in group 3 (14.5 ± 3.9%). Wall thickness of the ischemic area was significantly lower in group 3 versus group 1 and group 2 (2.9 ± 0.3, 5.9 ± 0.7, and 6.1 ± 0.7 mm; p = 0.005). The extent of late enhancement of the left ventricle was also significantly higher in group 3 (16.9 ± 2.1%) compared to group 1 (5.3 ± 5.4%; p = 0.003) and group 2 (9.7 ± 3.4%, p = 0.013). In conclusion, the present model of minimally invasive infarction coupled with ce-MRI may represent a useful alternative to the open chest model for studies of myocardial infarction and scar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40(6):633–644

    PubMed  CAS  Google Scholar 

  2. Reimer KA, Lowe JE, Rasmussen MM et al (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs. duration of coronary occlusion in dogs. Circulation 56(5):786–794

    PubMed  CAS  Google Scholar 

  3. Horstick G, Heimann A, Gotze O et al (1997) Intracoronary application of C1 esterase inhibitor improves cardiac function and reduces myocardial necrosis in an experimental model of ischemia and reperfusion. Circulation 95(3):701–708

    PubMed  CAS  Google Scholar 

  4. Horstick G, Berg O, Heimann A et al (2001) Application of C1-esterase inhibitor during reperfusion of ischemic myocardium: dose-related beneficial versus detrimental effects. Circulation 104(25):3125–3131

    Article  PubMed  CAS  Google Scholar 

  5. Klein HH, Puschmann S, Schaper J et al (1981) The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch 393(3):287–297

    CAS  Google Scholar 

  6. Kim RJ, Chen EL, Lima JA et al (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94(12):3318–3326

    PubMed  CAS  Google Scholar 

  7. Robotham JL, Stuart RS, Borkon AM et al (1988) Effects of changes in left ventricular loading and pleural pressure on mitral flow. J Appl Physiol 65(4):1662–1675

    PubMed  CAS  Google Scholar 

  8. Duncker DJ, Klassen CL, Ishibashi Y et al (1996) Effect of temperature on myocardial infarction in swine. Am J Physiol 270(4 Pt 2):H1189–H1199

    Google Scholar 

  9. Hale SL, Dave RH, Kloner RA (1997) Regional hypothermia reduces myocardial necrosis even when instituted after the onset of ischemia. Basic Res Cardiol 92(5):351–357

    PubMed  CAS  Google Scholar 

  10. Schwartz LM, Verbinski SG, Vander Heide RS et al (1997) Epicardial temperature is a major predictor of myocardial infarct size in dogs. J Mol Cell Cardiol 29(6):1577–1583

    Article  PubMed  CAS  Google Scholar 

  11. Bitkover CY, Hansson LO, Valen G et al (2000) Effects of cardiac surgery on some clinically used inflammation markers and procalcitonin. Scand Cardiovasc J 34(3):307–314

    Article  PubMed  CAS  Google Scholar 

  12. Cohen MV, Eldh P (1973) Experimental myocardial infarction in the closed-chest dog:controlled production of large or small areas of necrosis. Am Heart J 86(6):798–804

    Article  PubMed  CAS  Google Scholar 

  13. Chareonthaitawee P, Christenson SD, Anderson JL et al (2006) Reproducibility of measurements of regional myocardial blood flow in a model of coronary artery disease: comparison of H215O and 13NH3 PET techniques. J Nucl Med 47(7):1193–1201

    PubMed  CAS  Google Scholar 

  14. Croisille P, Moore CC, Judd RM et al (1999) Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation 99(2):284–291

    PubMed  CAS  Google Scholar 

  15. Kraitchman DL, Bluemke DA, Chin BB et al (2000) A minimally invasive method for creating coronary stenosis in a swine model for MRI and SPECT imaging. Invest Radiol 35(7):445–451

    Article  PubMed  CAS  Google Scholar 

  16. Yang Y, Foltz WD, Graham JJ et al (2007) MRI evaluation of microvascular obstruction in experimental reperfused acute myocardial infarction using a T1 and T2 preparation pulse sequence. J Magn Reson Imaging 26:1486–1492

    Article  PubMed  Google Scholar 

  17. Horstick G, Bierbach B, Schlindwein P et al (2007) Resistance of the internal mammary artery to restenosis: a histomorphologic study of various porcine arteries. J Vasc Res 45:45–53

    Article  PubMed  Google Scholar 

  18. Schaper W (1984) Experimental infarcts and the microcirculation. Raven Press, New York, p 12

    Google Scholar 

  19. Schaper W, Binz K, Sass S et al (1987) Influence of collateral blood flow and of variations in MVO2 on tissue-ATP content in ischemic and infarcted myocardium. J Mol Cell Cardiol 19(1):19–37

    Article  PubMed  CAS  Google Scholar 

  20. Hale SL, Kloner RA (1988) Left ventricular topographic alterations in the completely healed rat infarct caused by early and late coronary artery reperfusion. Am Heart J 116(6 Pt 1):1508–1513

    Google Scholar 

  21. Reffelmann T, Sensebat O, Birnbaum Y et al (2004) A novel minimal-invasive model of chronic myocardial infarction in swine. Coron Artery Dis 15(1):7–12

    Article  PubMed  Google Scholar 

  22. Naslund U, Haggmark S, Johansson G et al (1992) A closed-chest myocardial occlusion-reperfusion model in the pig: techniques, morbidity and mortality. Eur Heart J 13(9):1282–1289

    PubMed  CAS  Google Scholar 

  23. Krombach GA, Kinzel S, Mahnken AH et al (2005) Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine. Invest Radiol 40(1):14–18

    PubMed  Google Scholar 

  24. Horstick G, Berg O, Heimann A et al (1999) Surgical procedure affects physiological parameters in rat myocardial ischemia:need for mechanical ventilation. Am J Physiol 276(2 Pt 2):H472–H479

    Google Scholar 

  25. Opitz CF, Mitchell GF, Pfeffer MA et al (1995) Arrhythmias and death after coronary artery occlusion in the rat. Continuous telemetric ECG monitoring in conscious, untethered rats. Circulation 92(2):253–261

    PubMed  CAS  Google Scholar 

  26. Wiggers H, Klebe T, Heickendorff L et al (1997) Ischemia and reperfusion of the porcine myocardium: effect on collagen. J Mol Cell Cardiol 29(1):289–299

    Article  PubMed  CAS  Google Scholar 

  27. Gerber BL, Rochitte CE, Melin JA et al (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101(23):2734–2741

    PubMed  CAS  Google Scholar 

  28. Lluch S, Moguilevsky HC, Pietra G et al (1969) A reproducible model of cardiogenic shock in the dog. Circulation 39(2):205–218

    PubMed  CAS  Google Scholar 

  29. Rees JR, Redding VJ (1968) Experimental myocardial infarction by a wedge method: early changes in collateral flow. Cardiovasc Res 2(1):43–53

    Article  PubMed  CAS  Google Scholar 

  30. Jacobey JA, Taylor WJ, Smith GT et al (1962) A new therapeutic approach to acute coronary occlusion. I. Production of standardized coronary occlusion with microspheres. Am J Cardiol 9:60–73

    Article  PubMed  CAS  Google Scholar 

  31. Smiseth OA, Lindal S, Mjos OD et al (1983) Progression of myocardial damage following coronary microembolization in dogs. Acta Pathol Microbiol Immunol Scand [A] 91(2):115–124

    CAS  Google Scholar 

  32. Haines DE, Verow AF, Sinusas AJ et al (1994) Intracoronary ethanol ablation in swine: characterization of myocardial injury in target and remote vascular beds. J Cardiovasc Electrophysiol 5(1):41–49

    Article  PubMed  CAS  Google Scholar 

  33. Lakkis N (2000) New treatment methods for patients with hypertrophic obstructive cardiomyopathy. Curr Opin Cardiol 15(3):172–177

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki M, Asano H, Tanaka H et al (1999) Development and evaluation of a new canine myocardial infarction model using a closed-chest injection of thrombogenic material. Jpn Circ J 63(11):900–905

    Article  PubMed  CAS  Google Scholar 

  35. Petersen SE, Voigtlander T, Kreitner KF et al (2003) Late improvement of regional wall motion after the subacute phase of myocardial infarction treated by acute PTCA in a 6-month follow-up. J Cardiovasc Magn Reson 5(3):487–495

    Article  PubMed  CAS  Google Scholar 

  36. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  PubMed  CAS  Google Scholar 

  37. Petersen SE, Horstick G, Voigtlander T et al (2003) Diagnostic value of routine clinical parameters in acute myocardial infarction: a comparison to delayed contrast enhanced magnetic resonance imaging. Delayed enhancement and routine clinical parameters after myocardial infarction. Int J Cardiovasc Imaging 19(5):409–416

    Article  PubMed  Google Scholar 

  38. Horstick G, Petersen SE, Voigtlander T et al (2004) Cardio-MRT. The multimodal functional analysis of the future. Z Kardiol 93(Suppl 4):IV36–IV47

    Article  PubMed  Google Scholar 

  39. Vosseler M, Abegunewardene N, Hoffmann N et al (2009) Area at risk and viability after myocardial ischemia and reperfusion can be determined by contrast-enhanced cardiac magnetic resonance imaging. Eur Surg Res 43:13–23

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Abegunewardene.

Additional information

N. Abegunewardene and M. Vosseler contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abegunewardene, N., Vosseler, M., Gori, T. et al. Usefulness of MRI to Differentiate Between Temporary and Long-Term Coronary Artery Occlusion in a Minimally Invasive Model of Experimental Myocardial Infarction. Cardiovasc Intervent Radiol 32, 1033–1041 (2009). https://doi.org/10.1007/s00270-009-9596-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-009-9596-5

Keywords

Navigation