Skip to main content
Log in

Cost–benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in Southeastern Spain

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

A cost–benefit analysis was performed for a mature, commercial almond plantation [Prunus dulcis (Mill.) D.A. Webb] cv. Cartagenera in Southeastern Spain to determine the profitability of several regulated-deficit irrigation (RDI) strategies under subsurface drip irrigation conditions (SDI), compared to an irrigation regime covering 100% crop evapotranspiration (ETc). The plantation was subjected to three drip irrigation treatments for 4 years: T1 (control, surface drip irrigation)—irrigated at 100% ETc throughout the growth cycle, T2 (RDI treatment under SDI)—an irrigation strategy that provided 100% ETc except during the kernel-filling period, when only 20% ETc was provided and T3 (RDI treatment under SDI)—an irrigation strategy that provided 100% ETc except during the kernel-filling period (20% ETc) and post-harvest (50% ETc). A 45% water saving was achieved with strategy SDI T3, while almond production was reduced by only 17%, increasing water use efficiency compared to the control irrigation regime. SDI T3 had fixed overhead costs 9% higher than T1, however, the operating costs were 21% lower for SDI T3 compared to T1. This reduction in costs was basically due to the 45% saving in the cost of water and the corresponding saving in electricity. The break-even point was lower in SDI T3; each kilogram of almonds cost 0.03€ less to produce than in the control conditions. Related to this, the maximum price of water for obtaining profit 0 was 0.21€ m−3 for SDI T3 compared to 0.18€ m−3 for T1, indicating that higher water costs can be borne in SDI T3 (up to 0.03€ m−3 more expensive). Finally the profit/total costs ratio (used as an expression of the overall profitability of the orchard) indicated a greater profitability for the treatment SDI T3 compared to T1 (10.46 and 9.27%, respectively). The RDI strategy SDI T2 did not show economic indices or water use efficiency as much as those of SDI T3. From these results we conclude that RDI applied during kernel-filling and post-harvest under SDI conditions, and specifically the irrigation strategy SDI T3, may be considered economically appropriate in semiarid conditions in order to save water and improve water use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alam M, Trooien TP, Lamm FR, Rogers DH (1999). Filtration and maintenance considerations for subsurface drip irrigation (SDI) systems. Irrigation Management series. Kansas State University. Manhattan, pp 4

  • Alcón FJ, Bruno H, De Miguel MD (2004) El agua en la agricultura de la región de Murcia. Agricultura, Alimentación y espacio rural en transición. V Congreso de Economía Agraria. Santiago de Compostela, 15–17 de Septiembre 2004, pp 16

  • Ayars JE, Phene CJ, Hutmacher RB, Davis KR, Schoneman RA, Vail SS, Mead RM (1999) Subsurface drip irrigation of row crops: a review of 15 years of research at the water management research laboratory. Agr Water Manage 42:1–27

    Article  Google Scholar 

  • Ballestero E (1975) Economía de la empresa. Alianza Editorial, Madrid

    Google Scholar 

  • Ballestero E (2000) Economía de la empresa agraria y alimentaria. Mundi-Prensa, Madrid, p 416

    Google Scholar 

  • Barth HK (1995) Resource conservation and preservation through a new subsurface irrigation system. In: Lamm FR (ed) Proc. 5th Int’l. Microirrigation Congress.ASAE St. Joseph, Michigan pp 168–174

  • Batchelor CH, Lovely M, Murata CJ, McGrath SP (1994) Improving water use effectiveness by subsurface irrigation. Aspects Appl Biol 38:269–278

    Google Scholar 

  • Blanco MI (1994) Contabilidad de costes: análisis y control. Pirámide, Madrid

    Google Scholar 

  • Burt CE (1995) Is buried drip the future with permanent crops? Brig Bus Technol 3:20–22

    Google Scholar 

  • Camp CR (1998) Subsurface drip irrigation: A review. Transactions of ASAE 41:1353–1367

    Google Scholar 

  • Camp CR, Bauer PJ, Hunt PG (1997) Subsurface drip irrigation lateral spacing and management for cotton in the southeastern Coastal Plain. Trans ASAE 40:993–999

    Google Scholar 

  • Cantero P (1996) El análisis coste-beneficio en el sector agrario. Consejería de Agricultura y Pesca. Junta de Andalucía, Sevilla

    Google Scholar 

  • Clark GA, Smajstrla AG (1996) Design considerations for vegetable crop drip irrigation systems. HortTech 6:155–159

    Google Scholar 

  • Coelho EF, Or D (1999) Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant Soil 206:123–136

    Article  Google Scholar 

  • De tar WR, Browne GT, Phene CJ, Sanden BL (1996) Real-time irrigation scheduling of potatoes with sprinkler and subsurface drip systems. In: Camp CR, Sadler EJ, Yoder RE (eds) Proc. Int’l. Conf on Evapotranspiration and irrigation scheduling. ASAE, St Joseph, Michigan pp 812–824

  • Del Amor FM, Cerdá A (1997) El riego localizado subterráneo en almendro. Aspectos hidráulicos. Frut Prof 85:42–47

    Google Scholar 

  • Del Amor FM, Del Amor F (1999) Riego por goteo subterráneo en almendro. Aspectos de manejo y respuesta del cultivo. Frut Prof 104:61–66

    Google Scholar 

  • Dorenboos J, Pruitt WO (1977) Requerimientos hídricos de los cultivos. FAO, Rome

    Google Scholar 

  • El-Gindy AM, El-Araby AM (1996) Vegetable crop response to surface and subsurface drip under calcareous soil. Proceedings of the International Conference of Evapotranspiration and Irrigation Scheduling. November 3–6, San Antonio, pp 1021–128

  • European Central Bank (BCE) (2005) http://www.bde.es/infost/d0201.pdf

  • Girona J, Marsal J (1995) Estrategias de RDC en almendro. In: Zapata M, Segura P (eds) Riego Deficitario Controlado. Fundamentos y aplicaciones. Mundiprensa, Madrid España, pp 99–118

  • Girona J, Mata M, Marsal J, Miravete C (1994) Efectos acumulados de 3 años de riego deficitario controlado en almendro (Prunus dulcis L). XII Jornadas Técnicas sobre Riegos. Comunicaciones. Anejo I:1–8

    Google Scholar 

  • Goldhamer DA (1996) Regulated deficit irrigation of fruit and nut trees. In: Proceedings of 7th international conference on water and irrigation, 13–16 May. Tel Aviv, Israel, p 152

  • Grattan SR, Schwankl LJ, Lanini TW (1988) Weed control by subsurface drip irrigation. Cal Agric May-June:22–24

  • Grimes DW, Munk DS, Goldhamer DA (1990) Drip irrigation emitter placement in a slowly permeable soil. In: Proc.3rd Nat. Irrig. Simp. ASAE, St. Joseph, Michigan pp 248–254

  • Hoffman GJ, Martin DL (1993) Engineering systems to enhance irrigation performance. Irrig Sci 14:53–63

    Article  Google Scholar 

  • Hutmacher RB, Nightingale HI, Rolston DE, Biggar JW, Dale F, Vail SS, Peters D (1994) Growth and yield responses of almond (Prunus amygdalus) to trickle irrigation. Irrig Sci. 14:117–126

    Article  Google Scholar 

  • Klonsky K, Blank SC (1996) Economic considerations. In: Micke WC (ed) Almond Orchard Management. Division of Agricultural Sciences, University of California, Berkeley, California, pp 71–76

  • Lamm FR, Manges HL, Stone LR, Khan AH, Rogers DH (1995a) Water requirement of subsurface drip irrigated corn in northwest Kansas. Transactions of ASAE 38:441–448

    Google Scholar 

  • Lamm FR, Clark GA, Yitayew M, Schoneman RA, Mead RM, Schneider AD (1995b) Installations issues for SDI Systems. 16th Annual International Irrigation Exposition and Technical conference, Phoenix, pp 12–14

  • Lamm FR, Spurgeon WE, Rogers DH, Manges HL (1995c) Corn production using subsurface drip irrigation. In: Lamm FR (ed) Proc. 5th Int’l. Microirrigation Congress. ASAE, St. Joseph, Michigan pp 388–394

  • Lamm FR, Stone LR, Manges HL, O’brien DM (1997a) Optimum lateral spacing for subsurface drip-irrigated corn. Transactions of the ASAE 40:1021–1027

    Google Scholar 

  • Lamm FR, Schlegel AJ, Clark GA (1997b) Nitrogen fertigation for corn using SDI: a BMP. Annual International Meeting, Minneapolis, August 10–14, Paper.942174, ASAE, St Joseph, Michigan

  • Layard R, Glaister S (1994) Cost–benefit analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Letey J, Dinar A, Woodring C, Oster JD (1990) An economic analysis of irrigation systems. Irrg Sci 11:37–43

    Google Scholar 

  • Loomis RS (1983) Crop manipulation for efficient use of water: an overview. In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. Amer. Soc. Agron. Madison, pp 345–364

  • Machado MA, Rosário M, Oliveira G, Portas C (2003) Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant Soil 255:333–341

    Article  CAS  Google Scholar 

  • Mao JCT (1986) Análisis financiero. El Ateneo. Mexico D.F.

    Google Scholar 

  • Martinez-Hernandez JJ, Bar Yosef B, Kafkafi U (1991) Effect of surface and subsurface drip fertigation on sweet corn rooting, uptake, dry matter production and yield. Irrig Sci 12:153–159

    Article  Google Scholar 

  • Millán Alonso A (1988) Rentabilidad del agua en los cultivos más representativos en la Cuenca del Segura. Consejería de Agricultura, Ganadería y Pesca, Murcia

  • Mishan EJ (1982) Cost-benefit analysis. Georges Allen & Onwin Ltd, London

    Google Scholar 

  • Nelson SD, Davis S (1974) Soil salinity distribution in sprinkler and subsurface irrigated citrus. Trans ASAE 72(220):140–143

    Google Scholar 

  • Phene CJ (1999) Subsurface drip irrigation part I: Why and How? Irrig J April:8–10

  • Phene CJ, Davis KR, Hutmacher RB, McCormick RL (1987) Advantages of subsurface irrigation for processing tomatoes. Acta Hort 200:101–114

    Google Scholar 

  • Phene CJ, Davis KR, Hutmacher RB, Bar-Yosef B, Meek DW, Misaki J (1991) Effect of high frequency surface and subsurface drip irrigation on root distribution of sweet corn. Irrig Sci 12:135–140

    Article  Google Scholar 

  • Phene CJ, Davis KR, Hutmacher RB, Mead RM, Ayars JE, Schoneman RA (1993) Maximizing water-use efficiency with subsurface drip irrigation. Irrig J April:8–13

  • Romero P, Botía P, García F (2004a) Effects of regulated deficit irrigation under subsurface drip irrigation conditions on water relations of mature almond trees. Plant Soil 260:155–168

    Article  CAS  Google Scholar 

  • Romero P, Botía P, García F (2004b) Effects of regulated deficit irrigation under subsurface drip irrigation conditions on vegetative development and yield of mature almond trees. Plant Soil 260:169–181

    Article  CAS  Google Scholar 

  • Salazar DM, Melgarejo P (2002) Cultivos leñosos: frutales de zonas áridas. EI cultivo del almendro. Mundi-Prensa, Madrid p 307

  • Samuelson PA, Nordhaus WD (1990) Economía. Mcgraw-Hill, New York

    Google Scholar 

  • Stephens D (1994) Irrigation goes underground. Fruit grower, April:33–36

  • Thompson TL, Doerge TA (1996) Nitrogen and water interactions in subsurface trickle-irrigated leaf lettuce. I. Plant Response. Soil Science Soc Am J 60:163–168

    Article  CAS  Google Scholar 

  • Torrecillas A, Ruiz-Sanchez MC, León A, Dcl Amor F (1989) The response of young almond trees to different drip-irrigated conditions. Development and yield. J Hort Sci 64:1

    Google Scholar 

  • US Department of Labor (2005) Bureau of Labor Statistics. http://www.bls.gov/data

  • Vera J (1990) Notas sobre el regadío de la Región de Murcia. CEBAS-CSIC, Murcia

    Google Scholar 

  • Zoldoske DE (1999) Root intrusion prevention. Irrig J 49:14–15

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. David Walker for correction of the English. Moreover, we thank the Fundacion Instituto Euromediterráneo de Hidrotecnia (Region of Murcia) for providing the research grant to Dr. Pascual Romero Azorín.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Botía.

Additional information

Communicated by J. Ayars

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, P., García, J. & Botía, P. Cost–benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in Southeastern Spain. Irrig Sci 24, 175–184 (2006). https://doi.org/10.1007/s00271-005-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-005-0008-6

Keywords

Navigation