Skip to main content

Advertisement

Log in

Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

An Erratum to this article was published on 28 September 2010

An Erratum to this article was published on 17 March 2010

Abstract

The standard FAO methodology for the determination of crop water requirements uses the product of reference evapotranspiration (ETo) and crop coefficient values. This methodology can be also applied to soil-grown plastic greenhouse crops, which occupy extended areas in the Mediterranean basin, but there are few data assessing methodologies for estimating ETo in plastic greenhouses. Free-drainage lysimeters were used between 1993 and 2004 to measure ETo inside a plastic greenhouse with a perennial grass in Almería, south-eastern Spain. Mean daily measured greenhouse ETo ranged from values slightly less than 1 mm day−1 during winter to values of approximately 4 mm day−1 during summer in July. When the greenhouse surface was whitened from March to September (a common practice to control temperature), measured ETo was reduced by an average of 21.4%. Different methodologies to calculate ETo were checked against the measurements in the greenhouse without and with whitening. The methods that performed best in terms of accuracy and statistics were: FAO56 Penman–Monteith with a fixed aerodynamic resistance of 150 s m−1, FAO24 Pan Evaporation with a constant Kp of 0.79, a locally-calibrated radiation method and Hargreaves. Given the data requirements of the different methods, the Hargreaves and the radiation methods are recommended for the calculation of greenhouse ETo because of their simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen RG (2000) REF-ET: Reference evapotranspiration calculation software for FAO and ASCE Standardized Equations. Version 2.0 for Windows. University of Idaho Research and Extension Center, Kimberly, Idaho, USA. Available at http://www.kimberly.uidaho.edu/ref-et/ (January 24, 2002)

  • Allen RG, Pruitt WO (1991) FAO-24 reference evapotranspiration factors. J Irrig Drain Eng ASCE 117:758–773

    Article  Google Scholar 

  • Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimates of reference evapotranspiration. Agron J 81:650–662

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. FAO, Roma

    Google Scholar 

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Baselga J, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for houly calculation of reference ETo by the FAO-56 Penman-Monteith method. Agric Water Manage 81:1–22

    Article  Google Scholar 

  • Bailey BJ, Montero JI, Biel C, Wilkinson DJ, Antón A, Jolliet O (1993) Transpiration of Ficus benjamina: comparison of measurements with predictions of the Penman-Monteith model and a simplified version. Agric For Meteorol 65:229–243

    Article  Google Scholar 

  • Baille M, Baille A, Delmon D (1994a) Microclimate and transpiration of greenhouse rose crops. Agric For Meteorol 71:83–97

    Article  Google Scholar 

  • Baille M, Baille A, Laury JC (1994b) A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Sci Hortic 59:217–232

    Article  Google Scholar 

  • Baille A, Kittas C, Katsoulas N (2001) Influence of whitening on greenhouse microclimate and crop energy partitioning. Agric For Meteorol 107:293–306

    Article  Google Scholar 

  • Berengena J, Gavilán P (2005) Reference evapotranspiration estimation in a highly advective semiarid environment. J Irrig Drain Eng ASCE 131(2):147–163

    Article  Google Scholar 

  • Bonachela S, González AM, Fernández MD (2006) Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig Sci 25(1):53–62

    Article  Google Scholar 

  • Boulard T, Wang S (2000) Greenhouse crop transpiration simulation from external climate conditions. Agric For Meteorol 100:25–34

    Article  Google Scholar 

  • Briassoulis D, Waaijenberg D, Gratraud J, von Elsner B (1997) Mechanical properties of covering materials for greenhouses: part1. General overview. J Agric Eng Res 67:81–96

    Article  Google Scholar 

  • Castilla N, Hernández J (2005) The plastic greenhouse industry in Spain. Chron Hortic 45(3):15–20

    Google Scholar 

  • Chartzoulakis K, Drosos N (1995) Water use and yiled of greenhouse grown eggplant under drip irrigation. Agric Water Manage 28:113–120

    Article  Google Scholar 

  • Choisnel E, de Villele O, Lacroze F (1992) Une approche uniformisée du calcul de l’évapotranspiration potentielle pour l’ensemble des pays de la Communauté Européene. Commission of the European Communities, Luxembourg

    Google Scholar 

  • de Graaf R, van den Ende J (1981) Transpiration and evapotranspiration of the glasshouse crops. Acta Hortic 119:147–158

    Google Scholar 

  • de Villele O (1974) Besoins en eau des cultures sous serre. Essai de conduite des arrosages en fonction de l’ensoleillement. Acta Hortic 35:123–129

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO Irrigation and Drainage Paper No. 24 (rev.). FAO, Rome

    Google Scholar 

  • Eliades G (1988) Irrigation of greenhouse-grown cucumbers. J Hort Sci 63:235–239

    Google Scholar 

  • Enoch HZ, Enoch Y (1999) The history and geography of the greenhouse. In: Stanhill G, Enoch HZ (eds) Greenhouse ecosystems. Ecosystems of the world 20. Amsterdam, pp 1–15

    Google Scholar 

  • Fernández MD (1993) Calibración y evaluación de métodos para la determinación de la evapotranspiración de referencia bajo condiciones de invernadero tipo parral de Almería. Trabajo profesional fin de carrera, Universidad de Córdoba

    Google Scholar 

  • Gavilán P, Lorite IJ, Tornero S, Berengena J (2006) Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric Water Manage 81:257–281

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Google Scholar 

  • Itenfisu D, Elliott RL, Allen RG, Walter IA (2003) Comparison of reference evapotranspiration calculation as part of the ASCE standardization effort. J Irrig Drain Eng ASCE 129(6):440–448

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE Manual no 70. ASCE, New York

    Google Scholar 

  • Jolliet O, Bailey BJ (1992) The effect of climate on tomato transpiration in greenhouses: measurements and models comparison. Agric For Meteorol 58:43–62

    Article  Google Scholar 

  • Katsoulas N, Baille A, Kittas C (2001) Effect of misting on transpiration and conductances of a greenhouse rose canopy. Agric For Meteorol 106:233–247

    Article  Google Scholar 

  • Kittas C (1995) A simple climagraph for characterizing regional suitability for greenhouse cropping in Greece. Agric For Meteorol 78:133–141

    Article  Google Scholar 

  • Lecina S, Martínez-Cob A, Pérez PJ, Villalobos FJ, Baselga JJ (2003) Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions. Agric Water Manage 60:181–198

    Article  Google Scholar 

  • López JC (2003) Sistemas de calefacción en invernaderos cultivados de judía en el litoral mediterráneo. Doctoral thesis. Universidad de Almería, Spain

  • Medrano E, Lorenzo P, Sánchez-Guerrero MC, Montero JI (2005) Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Sci Hortic 105:163–175

    Article  Google Scholar 

  • Möller M, Assouline S (2007) Effects of a shading screen on microclimate and crop water requeriments. Irrig Sci 25:171–181

    Article  Google Scholar 

  • Möller M, Tanny J, Li Y, Cohen S (2004) Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agric For Meteorol 127:35–51

    Article  Google Scholar 

  • Monteith JL (1973) Principles of environmental physics. Edward Arnold, London

    Google Scholar 

  • Montero JI, Antón A, Muñoz P, Lorenzo P (2001) Transpiration from geranium grown under high temperatures and low humidities in greenhouses. Agric For Meteorol 107:323–332

    Article  Google Scholar 

  • Orgaz F, Fernández MD, Bonachela S, Gallardo M, Fereres E (2005) Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric Water Manage 72:81–96

    Article  Google Scholar 

  • Papadakis G, Briassoulis D, Scarascia Mugnozza G, Vox G, Feuilloley P, Stoffers A (2000) Radiometric and thermal properties of, and testing methods for, greenhouse covering materials. J Agric Eng Res 77:7–38

    Article  Google Scholar 

  • Pardossi A, Tognoni F, Incrocci L (2004) Mediterranean greenhouse technology. Chron Hortic 44:28–34

    Google Scholar 

  • Pereira LS, Perrier A, Allen RG, Alves I (1999) Evapotranspiration: concepts and future trends. J Irrig Drain Eng ASCE 125:45–51

    Article  Google Scholar 

  • Pérez-Parra J, Céspedes A (2001) Análisis de la demanda de inputs para la producción en el sector de cultivos protegidos de Almería. In: Cuadrado IM (ed) Estudio de la Demanda de Inputs Auxiliares: Producción y Manipulación en el Sistema Productivo Hortícola Almeriense. FIAPA, Almería, Spain, pp 1–102

    Google Scholar 

  • Pérez-Parra J, Baeza E, Montero JI, Bailey B (2004) Natural ventilation of parral greenhouses. Biosyst Eng 87:355–366

    Article  Google Scholar 

  • Quaglietta F, Zerbi G (1986) Water requirements of eggplant grown under a greenhouse. Acta Hortic 191:149–156

    Google Scholar 

  • Smith M, Allen R, Monteith J, Perrier A, Pereira L, Segeren A (1991) Report of the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. Land and Water Development Division, United Nations Food and Agriculture Service, Rome

    Google Scholar 

  • Stanghellini C (1987) Transpiration of greenhouse crops: an aid to climate management. Ph.D. Dissertation. Wageningen Agricultural University, The Netherlands

  • Steduto P, Caliandro A, Rubino P, Ben Mechilia N, Masmoudi M, Matínez-Cob A, Faci JM, Rana G, Mastrorilli M, El Mourid M, Karrou M, Kanber R, Kirda C, El-Quosy D, El-Askari K, Ait Ali M, Zareb D, and Snyder RL (1996) Penman-Monteith reference evapotranspiration estimates in the Mediterranean region. In: Proceedings of the International Conference on Evapotranspiration and Irrigation Scheduling, San Antonio, TX, USA, 3–6 November 1996, pp 357–364

  • Ventura F, Spano D, Duce P, Snyder RL (1999) An evaluation of common evapotranspiration equations. Irrig Sci 18:163–170

    Article  Google Scholar 

  • Wang S, Boulard T, Haxaire R (1999) Air speed profiles in a naturally ventilated greenhouse with a tomato crop. Agric For Meteorol 96:181–188

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Ame Meteorol Soc 63(11):1309–1313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Fernández.

Additional information

Communicated by J. Kijne.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00271-010-0233-5

An erratum to this article can be found at http://dx.doi.org/10.1007/s00271-010-0216-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, M.D., Bonachela, S., Orgaz, F. et al. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig Sci 28, 497–509 (2010). https://doi.org/10.1007/s00271-010-0210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-010-0210-z

Keywords

Navigation