Skip to main content

Advertisement

Log in

Monitoring minimal residual disease in AML: the right time for real time

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Detection of minimal residual disease (MRD) by polymerase chain reaction (PCR) has become an essential tool for molecular monitoring of acute myeloid leukemia (AML). Currently, specific translocation markers are available for 40–50% of AMLs. Expression markers may widen this spectrum to 70–90%. Quantitative PCR (Q-PCR, real-time PCR) is now as sensitive as conventional two-step PCR and could improve as well as facilitate clinical decision-making. Q-PCR has been applied to a variety of molecular markers, delineating threshold levels early after induction therapy, for postinduction monitoring, as well as for the detection of relapse. For most markers, lack of decline of transcript levels by less than 2 logs after chemotherapy has been established as a poor prognostic sign. Moreover, increases in transcript levels are almost invariably associated with relapse. However, the predictive value of PCR negativity after chemotherapy is not as clear. The major tasks for the future will be standardization of Q-PCR techniques, exact definition of threshold levels, and monitoring schedules in bone marrow (BM) and peripheral blood (PB), as well as investigation of novel markers found by microarray analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Bäsecke J, Griesinger F, Trümper L, Brittinger G (2002) Leukemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann Hematol 81:64–75

    Article  PubMed  Google Scholar 

  2. Barragan E, Bolufer P, Moreno I, Martin G, Nomdedeu J, Brunet S, Fernandez P, Rivas C, Sanz MA (2001) Quantitative detection of AML1–ETO rearrangement by real-time RT-PCR using fluorescently labeled probes. Leuk Lymphoma 42:747–56

    CAS  PubMed  Google Scholar 

  3. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E, Hoelzer D (1997) High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90:1217–1225

    CAS  PubMed  Google Scholar 

  4. Boeckx N, Willemse MJ, Szczepanski T, van der Velden VH, Langerak AW, Vandekerckhove P, van Dongen JJ (2002) Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia16:368–375

  5. Buonamici S, Ottaviani E, Testoni N, Montefusco V, Visani G, Bonifazi F, Amabile M, Terragna C, Ruggeri D, Piccaluga PP, Isidori A, Malagola M, Baccarani M, Tura S, Martinelli G (2002) Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 99:443–449

    Article  CAS  PubMed  Google Scholar 

  6. Cassinat B, Zassadowski F, Balitrand N, Barbey C, Rain JD, Fenaux P, Degos L, Vidaud M, Chomienne C (2002) Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia 14:324–328

    Article  Google Scholar 

  7. Costello R, Sainty D, Blaise D, Gastaut JA, Gabert J (1997) Prognosis value of residual disease monitoring by polymerase chain reaction in patients with CBFß/MYH11-positive acute myeloblastic leukemia. Blood 89:2222–2223

    CAS  PubMed  Google Scholar 

  8. Dölken G (2001) Detection of minimal residual disease. Adv Cancer Res 82:133–185

    Google Scholar 

  9. Diverio D, Rossi V, Avvisati G, De Santis S, Pistilli A, Pane F, Saglio G, Martinelli G, Petti MC, Santoro A Pelicci PG, Mandelli F, Biondi A, Lo Coco F (1998) Early detection of relapse by prospective reverse transcriptase polymerase chain reaction analysis of the PML-RARα fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIE OP multicenter "AIDA" trial. Blood 92:784–789

    CAS  PubMed  Google Scholar 

  10. Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L, Zeng C, Baron A, Hunger SP, Varella-Garcia M, Gemmill R, Brizard F, Brizard A, Roche J (2002) Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 16:186–195

    Article  CAS  PubMed  Google Scholar 

  11. Evans PA, Short MA, Jack AS, Norfolk DR, Child JA, Shiach CR, Davies F, Tobal K, Liu Yin JA, Morgan GH (1997) Detection and quantitation of the CBFbeta/MYH11 transcripts associated with the inv(16) in presentation and follow–up samples from patients with AML. Leukemia 11:364–369

    Article  CAS  PubMed  Google Scholar 

  12. Fenaux P, Chomienne C, Degos L (1997) Acute promyelocytic leukemia: biology and treatment. Semin Oncol 24:92–102

    Google Scholar 

  13. Fujimaki S, Funato T, Harigae H, Imaizumi M, Suzuki H, Kaneko Y, Miura Y, Sasaki T (2000) A quantitative reverse transcriptase polymerase chain reaction method for the detection of leukaemic cells with t (8;21) in peripheral blood. Eur J Hematol 64:252–258

    Article  CAS  Google Scholar 

  14. Gabert J (1999) Detection of recurrent translocations using real time PCR; assessment of the technique for diagnosis and detection of minimal residual disease. Haematologica 84 [Suppl EHA] 4:107–109

    Google Scholar 

  15. Grimwade D (2002) The significance of minimal residual disease in patients with t(15;17). Baillieres Best Pract Res Clin Haematol 15:137–158

    Article  Google Scholar 

  16. Grimwade D (2002) Screening for core binding factor gene rearrangements in acute myeloid leukemia. Leukemia 16:964–969

    Article  CAS  PubMed  Google Scholar 

  17. Gu BW, Hu J, Xu L, Yan H, Jin WR, Zhu YM, Zhao WL, Niu C, Cao Q, Su XY, Gu J, Ying HY, Chen Y, Xiong SM, Shen ZX, Chen Z, Chen SJ (2001) Feasibility and clinical significance of real–time quantitative RT–PCR assay of PML–RARα fusion transcript in patients with acute promyelocytic leukemia. Hematol J 2:330–340

    Article  CAS  PubMed  Google Scholar 

  18. Guerrasio A, Pilatrino C, De Micheli D, Cilloni D, Serra A, Gottardi E, Parziale A, Marmont F, Diverio D, Divona M, Lo Coco F, Saglio G (2002) Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 16:1176–1181

    Article  CAS  PubMed  Google Scholar 

  19. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    CAS  PubMed  Google Scholar 

  20. Hokland P, Pallisgaard N (2000) Integration of molecular methods for detection of balanced translocations in the diagnosis and follow-up of patients with leukemia. Semin Hematol 37:358–367

    Article  CAS  PubMed  Google Scholar 

  21. Imoto S, Murayama T, Gomyo H, Mizuno I, Sugimoto T, Nakagawa T, Koizumi T (2000) Long-term molecular remission induced by donor lymphocyte infusions for recurrent acute myeloblastic leukemia after allogeneic bone marrow transplantation. Bone Marrow Transplant 26:809–810

    Article  CAS  PubMed  Google Scholar 

  22. Inoue K, Sugiyama H, Ogawa, H, Nakagawa M, Yamagami T, Miwa H, Kita K, Hiraoka A, Masaoka T, Nasu K (1994) WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84:3071–3079

    CAS  PubMed  Google Scholar 

  23. Karakas T, Miething CC, Maurer U, Weidmann E, Ackermann H, Hoelzer D, Bergmann L (2002) The coexpression of the apoptosis–related genes bcl–2 and wt1 in predicting survival in adult acute myeloid leukemia. Leukemia 16:846–854

    Article  CAS  PubMed  Google Scholar 

  24. Köhler T, Schill C, Deininger MW, Krahl R, Borchert S, Hasenclever D, Leiblein S, Wagner O, Niederwieser D (2002) High Bad and Bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia 16:22–29

    Article  PubMed  Google Scholar 

  25. Kondo M, Kudo K, Kimura H, Inaba J, Kato K, Kojima S, Matsuyama T, Horibe K (2000) Real-time quantitative reverse transcription–polymerase chain reaction for the detection of AML1-MTG8 fusion transcripts in t(8;21)-positive acute myelogenous leukemia. Leuk Res 24:951–956

    Article  CAS  PubMed  Google Scholar 

  26. Krauter J, Wattjes MP, Nagel S, Heidenreich O, Krug U, Kafert S, Bunjes D, Bergmann L, Ganser A, Heil G (1999) Real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21)-positive AML patients. Br J Haematol 107:80–85

    CAS  PubMed  Google Scholar 

  27. Krauter J, Höllge W, Wattjes MP, Nagel S, Ganser A, Heil G (2001) Real time RT-PCR for the detection and quantification of CBFB/MYH11 fusion transcripts in inv(16) positive AML. Hematol J 1 [Suppl 1]:231

  28. Krauter J, Heil G, Ganser A (2001) The AML1/MTG8 fusion transcript in t(8;21) positive AML and its implication for the detection of minimal residual disease malignancy. Hematol 5:369–381

    CAS  PubMed  Google Scholar 

  29. Krauter J, Hoellge W, Wattjes MP, Nagel S, Heidenreich O, Bunjes D, Ganser A, Heil G (2001) Detection and quantification of CBFB/MYH11 fusion transcripts in patients with inv(16)-positive acute myeloblastic leukemia by real-time RT-PCR. Genes Chromosomes Cancer 30:342–348

    Article  CAS  PubMed  Google Scholar 

  30. Kreuzer KA, Saborowski A, Lupberger J, Appelt C, Na IK, Le Coutre P, Schmidt CA (2001) Fluorescent 5'-exonuclease assay for the absolute quantification of Wilms' tumour gene (WT1) mRNA: implications for monitoring human leukaemias.Br J Haematol 114:313–318

    Article  CAS  PubMed  Google Scholar 

  31. Laczika K, Novak M, Hilgarth B, Mitterbauer M, Mitterbauer G, Scheidel-Petrovic A, Scholten C, Thalhammer-Scherrer R, Brugger S, Keil F, Schwarzinger I, Haas OA, Lechner K, Jaeger U (1998) Competitive CBFbeta/MYH11 reverse-transcriptase polymerase chain reaction for quantitative assessment of minimal residual disease during postremission therapy in acute myeloid leukemia with inversion(16): a pilot study. J Clin Oncol 16:1519–1525

    PubMed  Google Scholar 

  32. Laczika K, Mitterbauer G, Mitterbauer M, Knoebl P, Schwarzinger I, Greinix HT, Rabitsch W, Fonatsch C, Mannhalter C, Lechner K, Jager U (2001) Prospective monitoring of minimal residual disease in acute myeloid leukemia with inversion(16) by CBFbeta/MYH11 RT-PCR: implications for a monitoring schedule and for treatment decisions. Leuk Lymphoma 42:923–931

    CAS  PubMed  Google Scholar 

  33. Larramendy ML, Niini T, Elonen E, Nagy B, Ollila J, Vihinen M, Knuutila S (2002) Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis. Haematologica 87:569–577

    CAS  PubMed  Google Scholar 

  34. Liang DC, Shih LY, Hung IJ, Yang CP, Chen SH, Jaing TH, Liu HC, Chang WH (2002) Clinical relevance of internal tandem duplication of the FLT3 gene in childhood acute myeloid leukemia. Cancer 94:3292–3298

    Article  CAS  PubMed  Google Scholar 

  35. Liu Yin JA, Grimwade D (2002) Minimal residual disease evaluation in acute myeloid leukaemia. Lancet 360:160–162

    Article  PubMed  Google Scholar 

  36. Lo Coco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM, Biondi A, Rossi G, Carlo-Stella C, Selleri C, Martino B, Specchia G, Mandelli F (1999) Therapy of molecular relapse in acute promyelocytic leukemia. Blood 94:2225–2229

    PubMed  Google Scholar 

  37. Marcucci G, Livak KH, Bi W, Strout MP, Bloomfield CD, Caligiuri MA (1998) Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia 12:1482–1489

    Article  CAS  PubMed  Google Scholar 

  38. Marcucci G, Caligiuri MA, Döhner H, Archer KJ, Schlenk RF, Dohner K, Maghraby EA, Bloomfield CD (2001) Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia 15:1072–1080

    Article  CAS  PubMed  Google Scholar 

  39. Martin G, Barragan E, Bolufer P, Chillon C, Garcia-Sanz R, Gomez T, Brunet S, Gonzalez M, Sanz MA (2000) Relevance of presenting white blood cell count and kinetics of molecular remission in the prognosis of acute myeloid leukemia with CBFbeta/MYH11 rearrangement. Haematologica 85:699–703

    CAS  PubMed  Google Scholar 

  40. Martinelli G, Buonamici S, Ottaviani E, Visani G, Tura S (2001) Identification in inv(16) positive acute myeloid leukemia patients of durable remission by real-time quantification of minimal residual disease (abstract 859). Hematol J 1 [Suppl 1]:231

  41. Martinelli GM, Buonamici S, Ottaviani E, Testoni N, Terragna C, Amabile M, Giannini B, Soverini S, Zardini C, Luatti S, Visani G, Isidori A, Piccaluga P, Baccarani M, Tura S (2001) Single-center experience of detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia by real-time RT-PCR (abstract 860). Hematol J 1 [Suppl 1]:231

  42. Matsushita M, Ikeda H, Kizaki M, Okamoto S, Ogasawara M, Ikeda Y, Kawakami Y (2001) Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukemia. Br J Haematol 112:916–926

    Article  CAS  PubMed  Google Scholar 

  43. Mitterbauer G, Zimmer C, Pirc-Danoewinata H, Haas OA, Hojas S, Schwarzinger I, Greinix H, Jager U, Lechner K, Mannhalter C (2002) Monitoring of minimal residual disease in patients with MLL-AF6-positive acute myeloid leukaemia by reverse transcriptase polymerase chain reaction. Br J Haematol 109:622–628

    Article  Google Scholar 

  44. Mitterbauer G, Zimmer C, Fonatsch C, Haas O, Thalhammer-Scherrer R, Schwarzinger I, Kalhs P, Jaeger U, Lechner K, Mannhalter C (1999) Monitoring of minimal residual leukemia in patients with MLL-AF9 positive acute myeloid leukemia by RT-PCR. Leukemia 13:1519–1524

    CAS  PubMed  Google Scholar 

  45. Mitterbauer G, Mannhalter C, Jaeger U, Kalhs P, Lechner K, Mitterbauer G (2000) Quantification of minimal residual disease in patients with acute promyelocytic leukemia (APL) by real time quantitative RT-PCR with specific fluorescent hybridization probes. Blood 96 [Suppl 1]:313a

  46. Mitterbauer M, Kusec R, Schwarzinger I, Haas OA, Lechner K, Jaeger U (1998) Comparison of karyotype analysis and RT-PCR for AML1/ETO in 204 unselected patients with AML. Ann Hematol 76:139–143

    PubMed  Google Scholar 

  47. Morschhauser F, Cayuela JM, Martini S, Baruchel A, Rousselot P, Socie G, Berthou P, Jouet JP, Straetmans N, Sigaux F, Preudhomme C (2000) Evaluation of minimal residual disease using reverse-transcription polymerase chain reaction in t(8;21) acute myeloid leukemia: a multicenter study of 51 patients. J Clin Oncol 18:788–794

    CAS  PubMed  Google Scholar 

  48. Miyamoto T, Weissman IL, Akashi K (2000) AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A 97:7521–7526

    Article  CAS  PubMed  Google Scholar 

  49. Pallisgaard N, Hokland P, Riishoj DC, Pedersen B, Jorgensen P (1998) Multiplex reverse transcription polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 92:574–588

    PubMed  Google Scholar 

  50. Schmid D, Heinze G, Linnerth B, Tisljar K, Kusec R, Geissler K, Sillaber C, Laczika K, Mitterbauer M, Zöchbauer S, Mannhalter C, Haas OA, Lechner K, Jäger U, Gaiger A (1997) Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia. Leukemia 11:639–643

    Article  CAS  PubMed  Google Scholar 

  51. Schnittger S, Wormann B, Hiddemann W, Griesinger F (1998) Partial tandem duplications of the MLL gene are detectable in peripheral blood and bone marrow of nearly all healthy donors. Blood 92:1728–1734

    CAS  PubMed  Google Scholar 

  52. Schnittger S, Schoch C, Mellert G, Landt O, Hiddemann W, Haferlach T (2001) Quantitative teal time Lightcycler PCR in AML with inv(16)/t(16;16) showing five different CBFb-MYH11 transcripts. Hematol J 1 [Suppl 1]:232

  53. Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, Buchner T, Wormann B, Hiddemann W, Griesinger F (2000) Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 14:796–804

    Article  CAS  PubMed  Google Scholar 

  54. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Löffler H, Sauerland CM, Serve H, Büchner T, Haferlach T, Hiddemann W (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66

    Article  CAS  PubMed  Google Scholar 

  55. Schoch C, Kohlmann A, Schnittger S, Brors B, Dugas M, Mergenthaler S, Kern W, Hiddemann W, Eils R, Haferlach T (2002) Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci U S A 99:10008–10013

    Article  CAS  PubMed  Google Scholar 

  56. Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B (2002) Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 133:118–123

    Article  CAS  PubMed  Google Scholar 

  57. Stirewalt DL, Willman CL, Radich JP (2001) Quantitative, real-time polymerase chain reactions for FTL3 internal tandem duplications are highly sensitive and specific. Leuk Res 25:1085–1088

    Article  CAS  PubMed  Google Scholar 

  58. Strehl S, König M, Mann G, Haas OA (2001) Multiplex reverse transcriptase-polymerase chain reaction screening in childhood acute myeloblastic leukemia. Blood 97:805–808

    Article  CAS  PubMed  Google Scholar 

  59. Sugimoto T, Das H, Imoto S, Murayama T, Gomyo H, Chakraborty S, Tanguchi R, Isobe T, Nakagawa T, Nishimuar R, Koizumi T (2000) Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol 64:101–106

    Article  CAS  PubMed  Google Scholar 

  60. Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Mazdo J, Sedlacek P, Vavra V, Michalova K, Jarosova M, Stary J (2002) Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia 16:1381–1389

    Article  CAS  PubMed  Google Scholar 

  61. van Dongen JJ, Seriu T, Panzer–Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, de Bruijn MA, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WC, Riehm H, Bartram CR (1998) Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352:1731–1738

    Article  PubMed  Google Scholar 

  62. van Dongen JJM, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, Gottardi E, Rambaldi A, Dotti G, Griesinger F, Parreira A, Gameiro P, Gonzalez Diaz M, Malec M, Langerak AW, San Miguel JF, Biondi A(1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 13:1901–1928

    Article  PubMed  Google Scholar 

  63. Visani G, Buonamici S, Malagola M, Isidori A, Piccaluga PP, Martinelli G, Ottaviani E, Grafone T, Baccarani M, Tura S (2001) Pulsed ATRA as single therapy restores long-term remission in PML-RARa-positive acute promyelocytic leukemia patients: real time quantification of minimal disease. A pilot study. Leukemia 15:1696–1700

    CAS  PubMed  Google Scholar 

  64. Wattjes MP, Krauter J, Nagel S, Heidenreich O, Ganser A, Heil G (2000) Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia. Leukemia 14:329–335

    Article  CAS  PubMed  Google Scholar 

  65. Weisser M, Schoch C, Haferlach T, Hiddemann W, Schnittger S (2001) The potential of real-time RT-PCR (Lightcycler Technology) for monitoring AML1/ETO fusion transcripts in t(8;21)-positive AML during induction chemotherapy. Hematol J 1 [Suppl 1]:231

Download references

Acknowledgements

U.J. is the recipient of a grant from the Austrian Academy of Sciences, Center of Molecular Medicine (CeMM). I wish to thank Klaus Lechner for critical comments and for his long-term support of MRD research at the University of Vienna General Hospital. Help with the preparation of the manuscript by Natascha Ruzicka is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Jaeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaeger, U., Kainz, B. Monitoring minimal residual disease in AML: the right time for real time. Ann Hematol 82, 139–147 (2003). https://doi.org/10.1007/s00277-002-0601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-002-0601-1

Keywords

Navigation