Skip to main content
Log in

Genetic determinants related to pharmacological induction of foetal haemoglobin in transfusion-dependent HbE-β thalassaemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Thalassaemia are the most common inherited autosomal recessive single gene disorders characterized by chronic hereditary haemolytic anaemia due to the absence or reduced synthesis of one or more of the globin chains. Haemoglobin E-β thalassaemia is the genotype responsible for approximately one half of all severe beta-thalassaemia worldwide. This study proposes to evaluate the effect of various molecular parameters on the response of hydroxyurea. Hydroxyurea was started at an initial dose of 10 mg/kg of body weight/day on 110 transfusion-dependent HbE-β thalassaemia patients. HbF level was measured by HPLC analysis. β-Thalassaemia mutations, XmnI and five other SNPs, and α-globin gene deletions and triplications were detected by ARMS-PCR, RFLP-PCR and Gap-PCR, respectively. Based on the factors for evaluating hydroxyurea-response, 42 patients were responders as they showed an increment of Hb from a mean baseline value of 6.45 g/dl (± 0.70) to 7.78 g/dl (± 0.72) post-therapy. Based on increase in HbF above the median value (14.72%) post-therapy, 78 patients were found to be responders. All the 78 responders showed mean decrease in transfusion of 74.26% (± 8.32) with a maximum decrease of 98.43%. There was a significant correlation between decrease in transfusion and increase in HbF level for all 78 responders. XmnI polymorphism showed the strongest association (p < 0.0001) with increase in HbF levels and Hb levels. Patients with α-globin gene deletions were better responders. It was concluded that hydroxyurea treatment is effective in transfusion-dependent HbE-β thalassaemia patients and the response is best in patients having both XmnI polymorphism and α-deletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modell B, Darlison M (2008) Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 86:480–487

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weatherall DJ, Clegg JB (2001) Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ 79:704–712

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kiran SS, Aithal S, Belagavi CS (2016) Hemoglobin E hemoglobinopathy in an adult from Assam with unusual presentation: a diagnostic dilemma. J Lab Physicians 8(2):116–119

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mohanty D, Colah RB, Gorakshakar AC, Patel RZ, Master DC, Mahanta J, Sharma SK, Chaudhari U, Ghosh M, Das S, Britt RP, Singh S, Ross C, Jagannathan L, Kaul R, Shukla DK, Muthuswamy V (2013) Prevalence of β-thalassemia and other haemoglobinopathies in six cities in India: a multicentre study. J Community Genet 4:33–42

    Article  CAS  PubMed  Google Scholar 

  5. Deka R, Reddy AP, Mukherjee BN, Das BM, Banerjee S, Roy M, Dey B, Malhotra KC, Walter H (1988) Hemoglobin E distribution in ten endogamous population groups of Assam, India. Hum Hered 38:261–266

    Article  CAS  PubMed  Google Scholar 

  6. Fuchareon S, Weatherall DJ (2012) The hemoglobin E thalassemias. Cold Spring Harb Perspect Med 2:a011734

    Google Scholar 

  7. Orkin SH, Kazazian HH, Antonarakis SE, Ostrer H, Goff SC, Sexton JP (1982) Abnormal RNA processing due to the exon mutation of βE-globin gene. Nature 300:768–769

    Article  CAS  PubMed  Google Scholar 

  8. Weatherall DJ, Clegg JB: The thalassaemia syndromes. 3rd. Blackwell Scientific; 2001

  9. Hardison RC (2012) Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med 2:a011627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oneal PA, Gantt NM, Schwartz JD, Bhanu NV, Lee YT, Moroney JW, Reed CH, Schechter AN, Luban NLC, Miller JL (2006) Fetal hemoglobin silencing in humans. Blood 108:2081–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stamatoyannopoulos G, Nienhuis AW (2001) Molecular basis of blood diseases, ed 3. Saunders, Philadelphia, PA

    Google Scholar 

  12. Wood WG (1993) Increased HbF in adult life. Baillieres Clin Haematol 6(1):177–213

    Article  CAS  PubMed  Google Scholar 

  13. Baliga BS, Pace BS, Chen HH, Shah AK, Yang YM (2000) Mechanism for fetal hemoglobin induction by hydroxyurea in sickle cell erythroid progenitors. Am J Hematol 65(3):227–233

    Article  CAS  PubMed  Google Scholar 

  14. Karimi M (2009) Hydroxyurea in the management of thalassemia intermedia. Hemoglobin 33:S177–S182

    Article  CAS  PubMed  Google Scholar 

  15. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, Chui DHK, Steinberg MH (2011) Fetal hemoglobin in sickle cell anemia. Blood 118(1):19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pule GD, Mowla S, Novitzky N, Wiysonge CS, Wonkam A (2015) A systematic review of known mechanisms of hydroxyurea-induced foetal haemoglobin for treatment of sickle cell disease. Expert Rev Haematol 8:669–679

    Article  CAS  Google Scholar 

  17. Stamatoyannopoulos G, Grosveld F (2001) The molecular basis of blood diseases, 3rd edn. W. B. Saunders, Philadelphia, pp 135–182

    Google Scholar 

  18. Sankaran VG, Orkin SH (2013) The switch from foetal to adult haemoglobin. Cold Spring Harb Perspect Med 3(1):a011643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weatherall DJ (1998) Pathophysiology of thalassaemia. Baillieres Clin Haematol 11:127–146

    Article  CAS  PubMed  Google Scholar 

  20. Weatherall DJ (2001) Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat. Rev. Genet. 2:245–255

    Article  CAS  PubMed  Google Scholar 

  21. Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, Wahlberg K, Ulug P, Spector TD, Garner C, Matsuda F, Farrall M, Lathrop M (2007) Itergenic variations of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal haemoglobin levels in adult. ProcNatlAcadSci USA 104(27):11346–11351

    Article  CAS  Google Scholar 

  22. Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, Foglio M, Zelenika D, Boland A, Rooks H, Best S, Spector TD, Farrall M, Lathrop M, Thein SL (2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39(10):1197–1199

    Article  CAS  PubMed  Google Scholar 

  23. Roy P, Bhattacharyya G, Mandal A, Dasgupta UB, Banerjee D, Chandra S, Das M (2012) Influence of BCL11A, HBS1L-MYB, HBBP1 single nucleotide polymorphisms and the HBG2 XmnI polymorphism on HbF levels. Hemoglobin 36(6):592–599

    Article  CAS  PubMed  Google Scholar 

  24. Nuinoon M, Makarasara W, Mushiroda T, Setianingsih I, Wahidiyat PA, Sripichai O, Kumasaka N, Takahashi A, Svasti S, Munkongdee T, Mahasirimongkol S, Peerapittayamongkol C, Viprakasit V, Kamatani N, Winichagoon P, Kubo M, Nakamura Y, Fucharoen S (2010) A genome-wide association identified the common genetic variants influence disease severity in β°-thalassemia / hemoglobin E. Hum. Genet. 127(3):303–314

    Article  CAS  PubMed  Google Scholar 

  25. Fanis P, Kousiappa I, Phylactides M, Kleanthous M (2014) Genotyping of BCL11A and HBS1L-MYB SNPs associated with fetal haemoglobin levels: a SNaPshotminisequencing approach. BMC Genomics 15(108):1471–2164

    Google Scholar 

  26. Badens C, Joly P, Agouti I, Thuret I, Gonnet K, Fattoum S, Francina A, Simeoni MC, Loundou A, Pissard S (2011) Variants in genetic modifiers of β-thalassemia can help to predict the major or intermedia type of the disease. Haematologica 96(11):1712–1714

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosnah B, Rosline H, Zaidah AW, Noor Haslina MN, Marini R, Shafini MY, Nurul Ain FA: Detection of common deletional Alpha-Thalassaemia spectrum by molecular technique in Kelantan, Northeastern Malaysia. Isrn Haematology. 2012; article ID 462969: 3 pgs

  28. Musallam KM, Taher AT, Cappellini MD, Sankaran VG (2013) CME article. Clinical experience with fetal hemoglobin induction therapy in patients with β thalassemia. Blood 121(12):2199–2212

    Article  CAS  PubMed  Google Scholar 

  29. Olivieri NF, Muraca GM, O'Donnell A, Premawardhena A, Fisher C, Weatherall DJ (2008) Studies in haemoglobin E beta-thalassaemia. Br. J. Haematol. 141(3):388–397

    Article  CAS  PubMed  Google Scholar 

  30. Dixit A, Chatterjee TC, Mishra P, Choudhry DR, Mahapatra M, Tyagi S, et al: Hydroxyurea in thalassemia intermedia—a promising therapy. Ann Hematol. 2005 Jul 19 [cited 2016 Dec 25]; 84(7): 441–6]

  31. Kalantri SA, Ray R, Chattopadhyay A, Bhattacharjee S, Biswas A, Bhattacharyya M (2018) Efficacy of decitabine as hemoglobin F inducer in HbE/β-thalassemia. Ann. Hematol. 97:1689–1694. https://doi.org/10.1007/s00277-018-3357-y

    Article  CAS  PubMed  Google Scholar 

  32. Bordbar MR, Silavizadeh S, Haghpanah S, Kamfiroozi R, Bardestani M, Karimi M (2014) Hydroxyurea treatment in transfusion-dependent β-thalassemia patients. Iran Red Crescent Med J 16(6):e18028

    Article  PubMed  PubMed Central  Google Scholar 

  33. Colah R, Mohanty D (2008) Laboratory manual for screening diagnosis and molecular analysis of haemoglobinopathies and red cell enzymopathies. Bhilani Publishing House, Mumbai India, pp 98–101

    Google Scholar 

  34. Lettre G, Sankaran VG, Bezerra MA et al (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB and β-globin gene associate with fetal haemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. U. S. A. 105(33):11869–11874

    Article  PubMed  PubMed Central  Google Scholar 

  35. Said F, Abdel-Salam A (2015) XmnI polymorphism: relation to β-thalassaemia phenotype and genotype in Egyptian children. The Egyptian Jourmal of Medical Human Genetics 16:123–127

    Article  Google Scholar 

  36. Wang W, Ma ESK, Chan AYY, Prior J, Erber WN, Chan LC, Chui DHK, Chong SS (2003) Single-tube multiplex-PCR screen for anti-3.7 and anti-4.2 α-globin gene triplications. Clin. Chem. 49(10):1679–1682

    Article  CAS  PubMed  Google Scholar 

  37. Liu YT, Old JM, Miles K, Fisher CA, Weatherall DJ, Clegg JB (2000) Rapid detection of α-thalassaemia deletions and α-globin gene triplication by multiplex polymerase chain reactions. Br. J. Haematol. 108:295–299

    Article  CAS  PubMed  Google Scholar 

  38. Chowdhury PK, Jena R, Chowdhury D (2016) Red cell indices as predictors of response to hydroxyurea therapy in HbE/beta thalassaemia patients. Blood 128:4838

    Google Scholar 

  39. Weatherall DJ (2005) The challenges of thalassaemia for the developing countries. Ann. N. Y. Acad. Sci. 1054:11–17

    Article  PubMed  Google Scholar 

  40. Olivieri NF, Pakbaz Z, Vichinsky E (2011) HbE/beta-thalassaemia: a common & clinibordbarcally diverse disorder. Indian J Med Res 134:522–531

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Saxon BR, Rees D, Olivieri NF (1998) Regression of extramedullary haemopoiesis and augmentation of fetal haemoglobin concentration during hydroxyurea therapy in β thalassaemia. Br. J. Haematol. 101:416–419

    Article  CAS  PubMed  Google Scholar 

  42. Bradai M, Abad MT, Pissard S, Lamraouni F, Skopinski L, de Montalembert M (2003) Hydroxyurea can eliminate transfusion requirements in children with severe β-thalassaemia. Blood 102:1529–1530

    Article  CAS  PubMed  Google Scholar 

  43. Watanapokasin Y, Chuncharunee S, Sanmund D, Kongnium W, Winichagoon P, Rodgers GP, Fucharoen S (2005) In vivo and in vitro studies of fetalhemoglobin induction by hydroxyurea in β-thalassemia /haemoglobin E patients. Exp Hematol 33:1486–1492

    Article  CAS  PubMed  Google Scholar 

  44. Karimi M, Zarei T, Haghpanah S, Moghadam M, Ebrahimi A, Rezaei N, Heidari G, Vazin A, Khavari M, Miri HR (2017) Relationship between some single-nucleotide polymorphism and response to hydroxyurea therapy in Iranian patients with β-thalassemia intermedia. J. Pediatr. Hematol./Oncol. 39(4):e171–e176

    Article  CAS  Google Scholar 

  45. Italia KY, Jijina FJ, Merchant R, Panjwani S, Nadkarni AH, Sawant PM, Nair SB, Ghosh K, Colah RB (2009) Response to hydroxyurea in β thalassemia major and intermedia: experience in western India. Clin. Chim. Acta 407(1–2):10–15

    Article  CAS  PubMed  Google Scholar 

  46. Dixit A, Chatterjee TC, Mishra P, Choudhry DR, Mahapatra M, Tyagi S, Kabra M, Saxena R, Choudhry VP (2005) Hydroxyurea in thalassemia intermedia—a promising therapy. Ann. Hematol. 84:441–446

    Article  CAS  PubMed  Google Scholar 

  47. David J, Weatherall JBC (2001) The thalassaemia syndromes, 4th edn. Oxford, UK, Blackwell Scientific

    Google Scholar 

  48. Chinelato IS, Carrocini GCS, Bonini-Domingos CR (2011) XmnI polymorphism frequency in heterozygote beta thalassemia subjects and its relation to fetal hemoglobin levels. Rev Bras Hematol Hemoter 33(6):483

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nguyen TK, Joly P, Bardel C, Moulsma M, Bonello-Palot N (2010) FrancinaA :the XmnI (G)gamma polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 beta-thalassemia intermedia patients. Blood Cells Mol Dis 45(2):124–127

    Article  CAS  PubMed  Google Scholar 

  50. Olivieri NF, Pakbaz Z, Vichinsky E (2011) Hb E/beta-thalassaemia: a common & clinically diverse disorder. Indian J Med Res 134(4):522–531

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ali N, Ayyub M, Khan SA, Ahmed S, Abbas K, Malik HS, Tashfeen S (2015) Frequency of Gγ-globin promoter −158 (C>T) XmnI polymorphism in patients with homozygous/compound heterozygous beta thalassaemia. HematolOncol Stem Cell Ther 8(1):10–15

    Article  CAS  Google Scholar 

  52. Karimi M, Haghpanah S, Farhadi A, Yavarian M (2012) Genotype-phenotype relationship of patients with β-thalassemia taking hydroxyurea: a 13-year experience in Iran. Int J Hematol 95:51–56

    Article  CAS  PubMed  Google Scholar 

  53. Panighari I, Dixit A, Arora S, Kabra M, Mahapatra M, Choudhry VP, Saxena R (2005) Do alpha deletions influence hydroxyurea response in thalassaemia intermedia? Hematology 10:61–63

    Article  CAS  Google Scholar 

  54. Yavarian M, Karimi M, Bakker E, Harteveld CL, Giordano PC (2004) Response to hydroxyurea treatment in Iranian transfusion dependent beta-thalassemia patients. Haematologica 89(10):1172–1178

    CAS  PubMed  Google Scholar 

  55. Italia KY, Jijina FJ, Merchant R, Panjwani S, Nadkarni AH, Sawant PM (2009) Response to hydroxyurea in beta thalassemia major and intermedia: experience in western India. Clin. Chim. Acta 407(1–2):10–15

    Article  CAS  PubMed  Google Scholar 

  56. Italia KY, Jijina FF, Merchant R, Panjwani S, Nadkarni AH, Sawant PM, Nair SB, Ghosh K, Colah RB (2010) Effect of hydroxyurea on the transfusion requirements in patients with severe HbE-beta-thalassaemia: a genotypic and phenotypic study. J Clin Pathol 63(2):147–150

    Article  CAS  PubMed  Google Scholar 

  57. Cario H, Wegener M, Debatin KM, Kohne E (2002) Treatment with hydroxyurea in thalassemia intermedia with paravertebral pseudotumors of extramedullary hematopoiesis. Ann. Hematol. 81:478–482

    Article  CAS  PubMed  Google Scholar 

  58. Watanapokasin Y, Chuncharunee S, Sanmund D, Kongnium W, Winichagoon P, Rodgers GP, Fucharoen S (2005) In vivo and in vitro studies of fetal hemoglobin induction by hydroxyurea in β-thalassemia /haemoglobin E patients. Exp Hematol 33:1486–1492

    Article  CAS  PubMed  Google Scholar 

  59. De Paula EV, Lima CSP, Arruda R, Alberto FL, Saad STO, Costa FF (2003) Long-term hydroxyurea therapy in beta-thalassaemia patients. Eur J Haematol 70:151–155

    Article  PubMed  Google Scholar 

  60. Sylvia ST, Elliott V, Sandra L, Nancy O, Nancy S, Frans KA (2008) Hydroxycarbamide-induced changes in E/beta thalassaemia red blood cells. Am J Hematol 83(11):842–845

    Article  CAS  PubMed Central  Google Scholar 

  61. Treatment with hydroxyurea – thalassaemia.com. Experimental drug therapy to increase fetal haemoglobin. Treating Thalassaemia. Northern California comprehensive thalassaemia center

  62. Arruda VR, Lima CSP, Saad STO, Costa FF (1997) Successful use of hydroxyurea in β-thalassemia major. N Engl J Med 336:964–965

    Article  CAS  PubMed  Google Scholar 

  63. Ghasemi A, Keikhaei B, Ghodsi R (2014) Side effects of hydroxyurea in patients with thalassaemia major and thalassaemia intermedia and sickle cell anaemia. Iran J PedHematol Oncol 4(3):114–117

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the patients attending OPD, Thalassaemia Clinic and Day Care of IHTM, Medical College, Kolkata. They also thank all the laboratory technical staff who assisted with the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitreyee Bhattacharyya.

Ethics declarations

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed written consent was obtained from all individual participants included in the study and parents of paediatric participants.

Financial relationship

The authors declare that they have no financial relationship with the organization that sponsored the research.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Nag, A., Ghosh, K. et al. Genetic determinants related to pharmacological induction of foetal haemoglobin in transfusion-dependent HbE-β thalassaemia. Ann Hematol 98, 289–299 (2019). https://doi.org/10.1007/s00277-018-3536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3536-x

Keywords

Navigation