Skip to main content

Advertisement

Log in

Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The therapeutic effect of ultrasound and micellar-encapsulated doxorubicin was studied in vivo using a tumor-bearing rat model with emphasis on how tumor growth rate is affected by ultrasonic parameters such as frequency and intensity.

Methods

This study employed ultrasound of two different frequencies (20, 476 kHz) and two pulse intensities, but identical mechanical indices and temporal average intensities. Ultrasound was applied weekly for 15 min to one of two bilateral leg tumors (DHD/K12/TRb colorectal epithelial cell line) in the rat model immediately after intravenous injection of micelle-encapsulated doxorubicin. This therapy was applied weekly for 6 weeks.

Results

Results showed that tumors treated with drug and ultrasound displayed, on average, slower growth rates than non-insonated tumors (= 0.0047). However, comparison between tumors that received 20 or 476-kHz ultrasound treatments showed no statistical difference (P = 0.9275) in tumor growth rate.

Conclusion

Application of ultrasound in combination with drug therapy was effective in reducing tumor growth rate, irrespective of which frequency was employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Dox:

Doxorubicin

IP:

Intraperitoneal

MI:

Mechanical index

SC:

Subcutaneous

TV:

Tumor volume

US:

Ultrasound

References

  1. Husseini GA, Pitt WG (2008) Micelles and nanoparticles in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–1152

    Article  PubMed  CAS  Google Scholar 

  2. Husseini GA, Pitt WG (2009) Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci (in press). doi:10.1002/jps.21444

  3. Rapoport N, Pitt WG, Sun H, Nelson JL (2003) Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Rel 91:85–95

    Article  CAS  Google Scholar 

  4. Husseini GA, de la Diaz Rosa MA, Gabuji T, Zeng Y, Christensen DA, Pitt WG (2007) Release of doxorubicin from unstabilized and stabilized micelles under the action of ultrasound. J Nanosci Nanotech 7:1–6

    Article  Google Scholar 

  5. Pruitt JD, Pitt WG (2002) Sequestration and ultrasound-induced release of doxorubicin from stabilized pluronic P105 micelles. Drug Deliv 9:253–258

    Article  PubMed  CAS  Google Scholar 

  6. Rapoport N, Gao ZG, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    Article  PubMed  CAS  Google Scholar 

  7. Husseini GA, Pitt WG (2008) The use of ultrasound and micelles in cancer treatment. J Nanosci Nanotechnol 8:2205–2215

    Article  PubMed  CAS  Google Scholar 

  8. Huang S (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1167–1176

    Article  PubMed  CAS  Google Scholar 

  9. Frenkel V, Etherington A, Greene M, Quijano J, Xie JW, Hunter F, Dromi S, Li KCP (2006) Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: Investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 13:469–479

    Article  PubMed  Google Scholar 

  10. Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, Poff J, Xie JW, Libutti SK, Li KCP, Wood BJ (2007) Pulsed-high intensity focused ultrasound and low temperature sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13:2722–2727

    Article  PubMed  CAS  Google Scholar 

  11. Kheirolomoom A, Dayton PA, Lum AFH, Little E, Paoli EE, Zheng H, Ferrara KW (2007) Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Controll Release 118:275–284

    Article  CAS  Google Scholar 

  12. Larina IV, Evers BM, Bartels C, Ashitkov TV, Larin KV, Esenaliev RO (2002) Ultrasound-enhanced drug delivery for efficient cancer therapy. Presented at Joint Meeting of the IEEE Engineering in Medicine and Biology Society and The Biomedical Engineering Society, Houston, TX

  13. Ivanoa Y, Evers BM, Thomas R, Ashitkov TV, Esenaliev RO (2002) Nanoparticles and ultrasound for delivery of model macromolecular anti-cancer drugs in tumors. Presented at Joint Meeting of the IEEE Engineering in Medicine and Biology Society and The Biomedical Engineering Society, Houston, TX

  14. Crowder KC, Hughes MS, Marsh JN, Barbieri AM, Fuhrhop RW, Lanza GM, Wickline SA (2005) Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: Implications for enhanced local drug delivery. Ultrasound Med Biol 31:1693–1700

    Article  PubMed  Google Scholar 

  15. Larina IV, Evers BM, Ashitkov TV, Bartels C, Larin KV, Esenaliev RO (2005) Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation. Technol Cancer Res Treat 4:217–226

    PubMed  Google Scholar 

  16. Chumakova OV, Liopo AV, Andreev VG, Cicenaite I, Evers BM, Chakrabarty S, Pappas TC, Esenaliev RO (2008) Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett 261:215–225

    Article  PubMed  CAS  Google Scholar 

  17. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002) Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Controll Release 83:287–302

    Article  CAS  Google Scholar 

  18. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002) Ultrasound enhancement of in vitro transfection of plasmid DNA by a cationized gelatin. J Drug Target 10:193–204

    Article  PubMed  CAS  Google Scholar 

  19. Hosseinkhani H, Tabata Y (2005) Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. J Controll Release 108:540–556

    Article  CAS  Google Scholar 

  20. Aoyama T, Hosseinkhani H, Yamamoto S, Ogawa O, Tabata Y (2002) Enhanced expression of plasmid DNA–cationized gelatin complex by ultrasound in murine muscle. J Controll Release 80:345–356

    Article  CAS  Google Scholar 

  21. Hosseinkhani H, Kushibiki T, Matsumoto K, Nakamura T, Tabata Y (2006) Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation. Cancer Gene Ther 13:479–489

    Article  PubMed  CAS  Google Scholar 

  22. Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60:1193–1208

    Article  PubMed  CAS  Google Scholar 

  23. Wu JR, Nyborg WL (2008) Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev 60:1103–1116

    Article  PubMed  CAS  Google Scholar 

  24. Sboros V (2008) Response of contrast agents to ultrasound. Adv Drug Deliv Rev 60:1117–1136

    Article  PubMed  CAS  Google Scholar 

  25. Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York

    Google Scholar 

  26. Prentice P, Cuschierp A, Dholakia K, Prausnitz M, Campbell P (2005) Membrane disruption by optically controlled microbubble cavitation. Nat Phys 1:107–110

    Article  CAS  Google Scholar 

  27. Barnett S (1998) Thresholds for nonthermal bioeffects: theoretical and experimental basis for a threshold Index. Ultrasound Med Biol 24:S41–S49

    Article  Google Scholar 

  28. Bouakaz A, Versluis M, de Jong N (2005) High-speed optical observations of contrast agent destruction. Ultrasound Med Biol 31:391–399

    Article  PubMed  Google Scholar 

  29. Husseini GA, Diaz MA, Richardson ES, Christensen DA, Pitt WG (2005) The role of cavitation in acoustically activated drug delivery. J Controll Release 107:253–261

    Article  CAS  Google Scholar 

  30. Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY (2000) Factors affecting acoustically-triggered release of drugs from polymeric micelles. J Controll Release 69:43–52

    Article  CAS  Google Scholar 

  31. Husseini GA, Rapoport NY, Christensen DA, Pruitt JD, Pitt WG (2002) Kinetics of ultrasonic release of doxorubicin from Pluronic P105 micelles. Coll Surf B Biointerf 24:253–264

    Article  CAS  Google Scholar 

  32. Husseini GA, Runyan CM, Pitt WG (2002) Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer 2:20

    Article  PubMed  Google Scholar 

  33. Marin A, Muniruzzaman M, Rapoport N (2001) Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Controll Release 71:239–249

    Article  CAS  Google Scholar 

  34. Munshi N, Rapoport N, Pitt WG (1997) Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett 117:1–7

    Article  Google Scholar 

  35. Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG (2002) Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 62:7280–7283

    PubMed  CAS  Google Scholar 

  36. Pruitt JD, Husseini G, Rapoport N, Pitt WG (2000) Stabilization of Pluronic P-105 micelles with an interpenetrating network of N,N-diethylacrylamide. Macromolecules 33:9306–9309

    Article  CAS  Google Scholar 

  37. Jacquet P, Stuart OA, Dalton R, Chang D, Sugarbaker PH (1996) Effect of intraperitoneal chemotherapy and fibrinolytic therapy on tumor implantation in wound sites. J Surg Oncol 62:128–134

    Article  PubMed  CAS  Google Scholar 

  38. Martin F, Caignard A, Jeannin JF, Leclerc A, Martin M (1983) Selection by trypsin of two sublines of rat colon cancer cells forming progressive or regressive tumors. Int J Cancer 32:623–627

    Article  PubMed  CAS  Google Scholar 

  39. Myhr G, Moan J (2006) Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 232:206–213

    Article  PubMed  CAS  Google Scholar 

  40. Nelson JL (2002) Ultrasonically enhanced drug delivery of doxorubicin in vivo from stabilized pluronic micelle carriers, in chemical engineering. Brigham Young University, Provo, p 79

    Google Scholar 

  41. Staples BJ, Pitt WG, Schaalje B, Roeder BL (2007) Ultrasonically-assisted drug delivery in rats reduces tumor growth. Presented at Controlled Release Society, Long Beach, CA

  42. Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery—a general review. Expert Opin Drug Deliv 1:37–56

    Article  PubMed  CAS  Google Scholar 

  43. Draper DO, Castel JC, Castel D (1995) Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. J Orthop Sports Phys Ther 22:142–150

    PubMed  CAS  Google Scholar 

  44. Kennedy JE, Ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76:590–599

    Article  PubMed  CAS  Google Scholar 

  45. Mitragotri S, Blankschtein D, Langer R (1995) Ultrasound-mediated transdermal protein delivery. Science 269:850–853

    Article  PubMed  CAS  Google Scholar 

  46. Mitragotri S, Kost J (2004) Low-frequency sonophoresis. A review. Adv Drug Deliv Rev 56:589–601

    Article  PubMed  CAS  Google Scholar 

  47. Qian Z, Sagers RD, Pitt WG (1997) The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann Biomed Eng 25:69–76

    Article  PubMed  CAS  Google Scholar 

  48. Peterson RV, Pitt WG (2000) The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Coll Surf B Biointerf 17:219–227

    Article  CAS  Google Scholar 

  49. Staples BJ (2007) Pharmacokinetics of ultrasonically-released, micelle-encapsulated doxorubicin in the rat model and its effect on tumor growth. Chemical Engineering Department, Brigham Young University, Provo, UT

  50. Staples BJ, Roeder BL, Pitt WG (2006) Doxorubicin delivery to rat tissues using polymeric micelles and ultrasound. Presented at Annual Meeting of the Society for Biomaterials. Pittsburgh, PA, USA

  51. Staples BJ, Roeder BL, Husseini GA, Badamjav O, Schaalje GB, Pitt WG (2009) Distribution of doxorubicin in rats subjected to ultrasonic cancer therapy (in review)

  52. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y (2004) Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharm 277:39–61

    Article  PubMed  CAS  Google Scholar 

  53. Seymour LW (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9:135–187

    PubMed  CAS  Google Scholar 

  54. Reddy LH (2005) Drug delivery to tumours: recent strategies. J Pharm Pharmacol 57:1231–1242

    Article  PubMed  CAS  Google Scholar 

  55. Kruskal J, Goldberg S, Kane R (2001) Novel in vivo use of conventional ultrasound to guide and enhance molecular delivery and uptake into solid tumors. Presented at Annual Meeting of the Radiological Society of North America, Chicago, IL

  56. Kruskal J, Miner B, Goldberg SN, Kane RA (2002) Optimization of conventional clinical ultrasound parameters for enhancing drug delivery into tumors. Radiology 225:587–588

    Google Scholar 

  57. Schlicher RK, Radhakrishna H, Tolentino TP, Apkarian RP, Zarnitsyn V, Prausnitz MR (2006) Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 32:915–924

    Article  PubMed  Google Scholar 

  58. Hallow DM, Mahajan AD, Prausnitz MR (2007) Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Controll Release 118:285–293

    Article  CAS  Google Scholar 

  59. Nyborg WL (2001) Biological effects of ultrasound: development of safety guidelines. Part II: General review. Ultrasound Med Biol 27:301–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Funding for this research was provided by the NIH (CA98138).

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Pitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staples, B.J., Roeder, B.L., Husseini, G.A. et al. Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats. Cancer Chemother Pharmacol 64, 593–600 (2009). https://doi.org/10.1007/s00280-008-0910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0910-8

Keywords

Navigation