Skip to main content

Advertisement

Log in

A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The anti-apoptotic function of the 70 kDa family of heat shock proteins and their role in cancer is well documented. Dual targeting of Hsc70 and Hsp70 with siRNA induces proteasome-dependent degradation of Hsp90 client proteins and extensive tumor specific apoptosis as well as the potentiation of tumor cell apoptosis following pharmacological Hsp90 inhibition.

Methods

We have previously described the discovery and synthesis of novel adenosine-derived inhibitors of the 70 kDa family of heat shock proteins; the first inhibitors described to target the ATPase binding domain. The in vitro activity of VER-155008 was evaluated in HCT116, HT29, BT474 and MDA-MB-468 carcinoma cell lines. Cell proliferation, cell apoptosis and caspase 3/7 activity was determined for VER-155008 in the absence or presence of small molecule Hsp90 inhibitors.

Results

VER-155008 inhibited the proliferation of human breast and colon cancer cell lines with GI50s in the range 5.3–14.4 μM, and induced Hsp90 client protein degradation in both HCT116 and BT474 cells. As a single agent, VER-155008 induced caspase-3/7 dependent apoptosis in BT474 cells and non-caspase dependent cell death in HCT116 cells. VER-155008 potentiated the apoptotic potential of a small molecule Hsp90 inhibitor in HCT116 but not HT29 or MDA-MB-468 cells. In vivo, VER-155008 demonstrated rapid metabolism and clearance, along with tumor levels below the predicted pharmacologically active level.

Conclusion

These data suggest that small molecule inhibitors of Hsc70/Hsp70 phenotypically mimic the cellular mode of action of a small molecule Hsp90 inhibitor and can potentiate the apoptotic potential of a small molecule Hsp90 inhibitor in certain cell lines. The factors determining whether or not cells apoptose in response to Hsp90 inhibition or the combination of Hsp90 plus Hsc70/Hsp70 inhibition remain to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684

    Article  CAS  PubMed  Google Scholar 

  2. Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115(Pt 14):2809–2816

    CAS  PubMed  Google Scholar 

  3. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5(10):781–791

    Article  CAS  PubMed  Google Scholar 

  4. Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581(19):3702–3710

    Article  CAS  PubMed  Google Scholar 

  5. Young JC, Barral JM, Ulrich HF (2003) More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 28(10):541–547

    Article  CAS  PubMed  Google Scholar 

  6. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5(22):2592–2601

    CAS  PubMed  Google Scholar 

  7. Sriram M, Osipiuk J, Freeman B, Morimoto R, Joachimiak A (1997) Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure 5(3):403–414

    Article  CAS  PubMed  Google Scholar 

  8. Sondermann H, Scheufler C, Schneider C, Hohfeld J, Hartl FU, Moarefi I (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291(5508):1553–1557

    Article  CAS  PubMed  Google Scholar 

  9. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23(16):2907–2918

    Article  CAS  PubMed  Google Scholar 

  10. Sliutz G, Karlseder J, Tempfer C, Orel L, Holzer G, Simon MM (1996) Drug resistance against gemcitabine and topotecan mediated by constitutive Hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br J Cancer 74(2):172–177

    CAS  PubMed  Google Scholar 

  11. Pocaly M, Lagarde V, Etienne G, Ribeil JA, Claverol S, Bonneu M, Moreau-Gaudry F, Guyonnet-Duperat V, Hermine O, Melo JV, Dupouy M, Turcq B, Mahon FX, Pasquet JM (2007) Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 21(1):93–101

    Article  CAS  PubMed  Google Scholar 

  12. Nylandsted J, Brand K, Jaattela M (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann NY Acad Sci 926:122–125

    Article  CAS  PubMed  Google Scholar 

  13. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97(14):7871–7876

    Article  CAS  PubMed  Google Scholar 

  14. Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19(5):570–582

    Article  CAS  PubMed  Google Scholar 

  15. Schmitt E, Maingret L, Puig PE, Rerole AL, Ghiringhelli F, Hammann A, Solary E, Kroemer G, Garrido C (2006) Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res 66(8):4191–4197

    Article  CAS  PubMed  Google Scholar 

  16. Nylandsted J, Wick W, Hirt UA, Brand K, Rohde M, Leist M, Weller M, Jaattela M (2002) Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res 62(24):7139–7142

    CAS  PubMed  Google Scholar 

  17. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  CAS  PubMed  Google Scholar 

  18. Mimnaugh EG, Xu W, Vos M, Yuan X, Isaacs JS, Bisht KS, Gius D, Neckers L (2004) Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 3(5):551–566

    CAS  PubMed  Google Scholar 

  19. Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206(2):149–157

    Article  CAS  PubMed  Google Scholar 

  20. Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F, Campbell M, Walton M, Lakhani S, Kaye S, Workman P, Judson I (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23(18):4152–4161

    Article  CAS  PubMed  Google Scholar 

  21. Powers MV, Clarke PA, Workman P (2008) Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14(3):250–262

    Article  CAS  PubMed  Google Scholar 

  22. Brough PA, Barril X, Borgognoni J, Chene P, Davies NG, Davis B, Drysdale MJ, Dymock B, Eccles SA, Garcia-Echeverria C, Fromont C, Hayes A, Hubbard RE, Jordan AM, Jensen MR, Massey A, Merrett A, Padfield A, Parsons R, Radimerski T, Raynaud FI, Robertson A, Roughley SD, Schoepfer J, Simmonite H, Sharp SY, Surgenor A, Valenti M, Walls S, Webb P, Wood M, Workman P, Wright L (2009) Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2, 3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem 52(15):4794–4809

    Article  CAS  PubMed  Google Scholar 

  23. Williamson DS, Borgognoni J, Clay A, Daniels Z, Dokurno P, Drysdale MJ, Foloppe N, Francis GL, Graham CJ, Howes R, Macias AT, Murray JB, Parsons R, Shaw T, Surgenor AE, Terry L, Wang Y, Wood M, Massey AJ (2009) Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J Med Chem 52(6):1510–1513

    Article  CAS  PubMed  Google Scholar 

  24. Schumacher RJ, Hurst R, Sullivan WP, McMahon NJ, Toft DO, Matts RL (1994) ATP-dependent chaperoning activity of reticulocyte lysate. J Biol Chem 269(13):9493–9499

    CAS  PubMed  Google Scholar 

  25. Gross M, Hessefort S (1996) Purification and characterization of a 66-kDa protein from rabbit reticulocyte lysate which promotes the recycling of hsp 70. J Biol Chem 271(28):16833–16841

    Article  CAS  PubMed  Google Scholar 

  26. Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, Patterson L, de Haven BA, Gowan S, Boxall F, Aherne W, Rowlands M, Hayes A, Martins V, Urban F, Boxall K, Prodromou C, Pearl L, James K, Matthews TP, Cheung KM, Kalusa A, Jones K, McDonald E, Barril X, Brough PA, Cansfield JE, Dymock B, Drysdale MJ, Finch H, Howes R, Hubbard RE, Surgenor A, Webb P, Wood M, Wright L, Workman P (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 68(8):2850–2860

    Article  CAS  PubMed  Google Scholar 

  27. Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, Quadt C, Buckler A, Cozens R, Drysdale MJ, Garcia-Echeverria C, Chene P (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33

    Article  PubMed  CAS  Google Scholar 

  28. Taldone T, Gozman A, Maharaj R, Chiosis G (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8(4):370–374

    Article  CAS  PubMed  Google Scholar 

  29. Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S, Kumaraswamy S, Balasis M, Greedy B, Armitage ES, Lawrence N, Bhalla K (2005) Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65(22):10536–10544

    Article  CAS  PubMed  Google Scholar 

  30. Gabai VL, Budagova KR, Sherman MY (2005) Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene 24(20):3328–3338

    Article  CAS  PubMed  Google Scholar 

  31. Zaarur N, Gabai VL, Porco JA Jr, Calderwood S, Sherman MY (2006) Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res 66(3):1783–1791

    Article  CAS  PubMed  Google Scholar 

  32. Powers MV, Clarke PA, Workman P (2009) Death by chaperone: HSP90, HSP70 or both? Cell Cycle 8(4):518–526

    CAS  PubMed  Google Scholar 

  33. Nadler SG, Dischino DD, Malacko AR, Cleaveland JS, Fujihara SM, Marquardt H (1998) Identification of a binding site on Hsc70 for the immunosuppressant 15-deoxyspergualin. Biochem Biophys Res Commun 253(1):176–180

    Article  CAS  PubMed  Google Scholar 

  34. Fewell SW, Day BW, Brodsky JL (2001) Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J Biol Chem 276(2):910–914

    Article  CAS  PubMed  Google Scholar 

  35. Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P, Day BW, Brodsky JL (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279(49):51131–51140

    Article  CAS  PubMed  Google Scholar 

  36. Wisen S, Gestwicki JE (2008) Identification of small molecules that modify the protein folding activity of heat shock protein 70. Anal Biochem 374(2):371–377

    Article  CAS  PubMed  Google Scholar 

  37. Mamelak D, Lingwood C (2001) The ATPase domain of Hsp70 possesses a unique binding specificity for 3’-sulfogalactolipids. J Biol Chem 276(1):449–456

    Article  CAS  PubMed  Google Scholar 

  38. Whetstone H, Lingwood C (2003) 3′Sulfogalactolipid binding specifically inhibits Hsp70 ATPase activity in vitro. Biochemistry 42(6):1611–1617

    Article  CAS  PubMed  Google Scholar 

  39. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  40. Chene P (2002) ATPases as drug targets: learning from their structure. Nat Rev Drug Discov 1(9):665–673

    Article  CAS  PubMed  Google Scholar 

  41. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    Article  CAS  PubMed  Google Scholar 

  42. Fersht AR (1987) The hydrogen bond in molecular recognition. Trends Biochem Sci 12:301–304

    Article  CAS  Google Scholar 

  43. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jonathan Moore and Nicolas Foloppe for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Massey.

Additional information

All authors are either present or past employees of Vernalis (R&D) Ltd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massey, A.J., Williamson, D.S., Browne, H. et al. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66, 535–545 (2010). https://doi.org/10.1007/s00280-009-1194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1194-3

Keywords

Navigation