Skip to main content

Advertisement

Log in

Angiotensin-(1–7) synergizes with colony-stimulating factors in hematopoietic recovery

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Angiotensin (1–7) [A(1–7)] is a bioactive peptide of the renin angiotensin system that stimulates the number of bone marrow progenitors and hematopoietic recovery after myelosuppression. We evaluated the combination of A(1–7) with colony-stimulating factors, Neupogen and Epogen, on bone marrow progenitors and the recovery of circulating formed elements following chemotherapy.

Methods

Mice were injected with gemcitabine followed 2 days later with A(1–7). Circulating blood cells and bone marrow progenitors were measured over time.

Results

Combination of A(1–7) with Neupogen (the latter given only 3 days starting at the white blood cell nadir) decreased the amount of Neupogen needed for optimal recovery by 10-fold. The progenitors measured include CFU-GEMM, CFU-GM, CFU-Meg and BFU-E. A(1–7) increased recovery of all progenitors when given alone or in combination with Neupogen above that with Neupogen alone. Combination of A(1–7) with Epogen slightly increased (not significantly) red blood cell concentrations above those achieved by Epogen alone. However, in this model, A(1–7) or A(1–7) in combination with Epogen increased all erythroid progenitors with the largest effect on early erythroid progenitors (immature BFU-E).

Conclusions

Neupogen and Epogen acted synergistically with A(1–7) to increase the concentration of myeloid, megakaryocytic and erythroid progenitor cells in the bone marrow following chemotherapy suggesting that A(1–7)’s multilineage effect on early progenitors in the marrow facilitates proliferation in response to lineage-specific growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodgers KE, Xiong S, diZerega GS (2002) Accelerated recovery from irradiation injury by angiotensin peptides. Cancer Chemother Pharmacol 49:403–411

    Article  PubMed  CAS  Google Scholar 

  2. Rodgers K, Xiong S, DiZerega GS (2003) Effect of angiotensin II and angiotensin(1–7) on hematopoietic recovery after intravenous chemotherapy. Cancer Chemother Pharmacol 51:97–106

    PubMed  CAS  Google Scholar 

  3. Rodgers KE, Oliver J, diZerega GS (2006) Phase I/II dose escalation study of angiotensin 1-7 [A(1–7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol 57:559–568

    Article  PubMed  CAS  Google Scholar 

  4. Rodgers K, Xiong S, Felix J et al (2001) Development of angiotensin (1–7) as an agent to accelerate dermal repair. Wound Repair Regen. 9:238–247

    Article  PubMed  CAS  Google Scholar 

  5. Pham H, Schwartz BM, Delmore JE, Davis KP, Reed E, Cruickshank S, Drummond L, Rodgers KE, Peterson KJ, diZerega GS (2013) Pharmacodynamic stimulation of thrombogenesis by angiotensin 1–7 in recurrent ovarian cancer patients receiving gemcitabine and platin-based chemotherapy. Cancer Chemother Pharmacol 4:965–972

    Article  Google Scholar 

  6. Rodgers KE, Xiong S, Steer R, diZerega GS (2000) Effect of angiotensin II on hematopoietic progenitor cell proliferation. Stem Cells. 18:287–294

    Article  PubMed  CAS  Google Scholar 

  7. Ellefson DD, diZerega GS, Espinoza T, Roda N, Maldonado S, Rodgers KE (2004) Synergistic effects of co-administration of angiotensin 1–7 and Neupogen on hematopoietic recovery in mice. Cancer Chemother Pharmacol 53:15–24

    PubMed  CAS  Google Scholar 

  8. Heringer-Walther S, Eckert K, Schumacher SM et al (2009) Angiotensin-(1–7) stimulates hematopoietic progenitor cells in vitro and in vivo. Haematologica 94:857–860

    Article  PubMed  CAS  Google Scholar 

  9. Abiko M, Rodgers KE, Campeau JD, Nakamura RM, Dizerega GS (1996) Alterations of angiotensin II Receptor levels in sutured wounds in rat skin. J Invest Surg 9:447–453

    Article  PubMed  CAS  Google Scholar 

  10. Mrug M, Stopka T, Julian BA, Prchal JF, Prchal JT (1997) Angiotensin II stimulates proliferation of normal early erythroid progenitors. J Clin Invest. 100:2310–2314

    Article  PubMed  CAS  Google Scholar 

  11. Lucius R, Gallinat S, Rosenstiel P, Herdegen T, Sievers J, Unger T (1998) The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 188:661–670

    Article  PubMed  CAS  Google Scholar 

  12. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M (1995) Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest. 95:46–54

    Article  PubMed  CAS  Google Scholar 

  13. Gallinat S, Yu M, Dorst A, Unger T, Herdegen T (1998) Sciatic nerve transection evokes lasting up-regulation of angiotensin AT2 and AT1 receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Brain Res Mol Brain Res 57:111–122

    Article  PubMed  CAS  Google Scholar 

  14. Rodgers KE, DeCherney AH, St Amand KM et al (1997) Histologic alterations in dermal repair after thermal injury effects of topical angiotensin II. J Burn Care Rehabil 18:381–388

    Article  PubMed  CAS  Google Scholar 

  15. Zambidis ET, Park TS, Yu W et al (2008) Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112:3601–3614

    Article  PubMed  CAS  Google Scholar 

  16. Jokubaitis VJ, Sinka L, Driessen R et al (2008) Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood 111:4055–4063

    Article  PubMed  CAS  Google Scholar 

  17. Liu HW, Cheng B, Li JF et al (2009) Characterization of angiotensin-converting enzyme expression during epidermis morphogenesis in humans: a potential marker for epidermal stem cells. Br J Dermatol 160:250–258

    Article  PubMed  Google Scholar 

  18. Rodgers KE, Espinoza T, Roda N, Meeks CJ, Hill C, Louie SG, Dizerega GS (2012) Accelerated hematopoietic recovery with angiotensin-(1–7) after total body radiation. Int J Radiat Biol 88(6):466–476

    Article  PubMed  CAS  Google Scholar 

  19. Balingit PP, Armstrong DG, Reyzelman AM, Bolton L, Verco SJ, Rodgers KE, Nigh KA, diZerega GS (2012) NorLeu3-A(1–7) stimulation of diabetic foot ulcer healing: results of a randomized, parallel-group, double-blind, placebo-controlled phase 2 clinical trial. Wound Repair Regen 20(4):482–490

    Google Scholar 

  20. Wadhwa M, Thorpe R (2008) Haematopoietic growth factors and their therapeutic use. Thromb Haemost 99:863–873

    PubMed  CAS  Google Scholar 

  21. Avneon M, Lifshitz L, Katz O et al (2009) Non-erythroid effects of erythropoietin: are neutrophils a target? Leuk Res 33:1430–1432

    Article  PubMed  CAS  Google Scholar 

  22. Christensen RD, Liechty KW, Koenig JM, Schibler KR, Ohls RK (1991) Administration of erythropoietin to newborn rats results in diminished neutrophil production. Blood 78:1241–1246

    PubMed  CAS  Google Scholar 

  23. Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM (2007) Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 50:1093–1098

    Article  PubMed  CAS  Google Scholar 

  24. Dias-Peixoto MF, Santos RA, Gomes ER et al (2008) Molecular mechanisms involved in the angiotensin-(1-7)/Mas signaling pathway in cardiomyocytes. Hypertension 52:542–548

    Article  PubMed  CAS  Google Scholar 

  25. Santos RA, Simoes e Silva AC, Maric C et al (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Google Scholar 

  26. Giani JF, Munoz MC, Mayer MA et al (2010) Angiotensin-(1–7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats. Am J Physiol Heart Circ Physiol. 298:H1003–H1013

    Article  PubMed  CAS  Google Scholar 

  27. Esteban V, Heringer-Walther S, Sterner-Kock A et al (2009) Angiotensin-(1–7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS ONE 4:e5406

    Article  PubMed  Google Scholar 

  28. Valdembri D, Serini G, Vacca A, Ribatti D, Bussolino F (2002) In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J. 16:225–227

    PubMed  CAS  Google Scholar 

  29. Soldi R, Primo L, Brizzi MF et al (1997) Activation of JAK2 in human vascular endothelial cells by granulocyte-macrophage colony-stimulating factor. Blood 89:863–872

    PubMed  CAS  Google Scholar 

  30. Miyajima A, Mui AL, Ogorochi T, Sakamaki K (1993) Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 82:1960–1974

    PubMed  CAS  Google Scholar 

  31. Dhar-Mascareno M, Pedraza A, Golde DW (2005) PI3-kinase activation by GM-CSF in endothelium is upstream of Jak/Stat pathway: role of alphaGMR. Biochem Biophys Res Commun 337:551–556

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by Tarix Inc. The authors would like to thank Melissa Donald for assistance in manuscript preparation and submission.

Conflict of interest

Only Dr. Rodgers and Dr. diZerega have conflicts. They are inventors on patents covering the activities of A(1–7) in bone marrow recovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen E. Rodgers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodgers, K.E., Espinoza, T.B., Roda, N. et al. Angiotensin-(1–7) synergizes with colony-stimulating factors in hematopoietic recovery. Cancer Chemother Pharmacol 72, 1235–1245 (2013). https://doi.org/10.1007/s00280-013-2312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2312-9

Keywords

Navigation