Skip to main content
Log in

The influence of TNF-α and Ang II on the proliferation, migration and invasion of HepG2 cells by regulating the expression of GRK2

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Hepatocellular carcinoma (HCC) is a common digestive system malignancy that is associated with a poor prognosis. This study researched the interaction of tumor necrosis factor-α (TNF-α) and angiotensin II (Ang II) in HCC cells proliferation, migration and invasion and examined their influence on the expression of G protein-coupled receptor kinase 2 (GRK2) and relevant receptors.

Methods

Cell Counting Kit-8 and Transwell assays were performed to evaluate the effects of TNF-α and Ang II on HepG2 cells proliferation, migration and invasion. Flow cytometry was used to investigate the expression of tumor necrosis factor receptor 1 (TNFR1), angiotensin II type 1 (AT1R) and type 2 receptors (AT2R) on the surface of HepG2 cells. Additionally, Western blot was performed to assess the modulation of GRK2 expression by TNF-α and Ang II in HepG2 cells. Meanwhile, GRK2 siRNA-transfected HepG2 cells were used to confirm the effects of GRK2, TNF-α and Ang II on the proliferation, migration and invasion of GRK2-knockdown HCC cells. Finally, the expression of TNF-α, Ang II, TNFR1, AT1R, AT2R and GRK2 proteins in HCC, tumor-adjacent and normal liver tissues were tested by immunohistochemistry.

Results

The data demonstrated that TNF-α and Ang II can enhance the proliferation, migration and invasion of HepG2 cells through suppressing GRK2 expression but that the two reagents combined did not have synergistic effects. Moreover,overexpression of TNFR1 and AT1R perhaps promoted the formation and progression of HCC, while high AT2R expression had the opposite effect.

Conclusions

This study provides new ideas for the prevention and treatment of HCC by researching the interaction and probable mechanism of different bioactive factors associated with HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bupathi M, Kaseb A, Meric-Bernstam F, Naing A (2015) Hepatocellular carcinoma: where there is unmet need. Mol Oncol 9(8):1501–1509

    Article  CAS  PubMed  Google Scholar 

  2. Schütte K, Balbisi F, Malfertheiner P (2016) Prevention of hepatocellular carcinoma. Gastrointest Tumors 3(1):37–43

    Article  PubMed  PubMed Central  Google Scholar 

  3. McGuire S (2016) World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr 7(2):418–419

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sastre J, Díaz-Beveridge R, García-Foncillas J, Guardeño R, López C, Pazo R, Rodriguez-Salas N, Salgado M, Salud A, Feliu J (2015) Clinical guideline SEOM: hepatocellular carcinoma. Clin Transl Oncol 17(12):988–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trojan J, Zangos S, Schnitzbauer AA (2016) Diagnostics and treatment of hepatocellular carcinoma in 2016: standards and developments. Visc Med 32(2):116–120

    PubMed  Google Scholar 

  6. Ji Y, Wang Z, Li Z, Zhang A, Jin Y, Chen H, Le X (2016) Angiotensin II enhances proliferation and inflammation through AT1/PKC/NF-κB signaling pathway in hepatocellular carcinoma cells. Cell Physiol Biochem 39(1):13–32

    Article  CAS  PubMed  Google Scholar 

  7. Zhang ZL, Zhang JF, Yuan YF, He YM, Liu QY, Mao XW, Ai YB, Liu ZS (2014) Suppression of angiogenesis and tumor growth in vitro and in vivo using an anti-angiopoietin-2 single-chain antibody. Exp Ther Med 7(3):543–552

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shin SP, Kim NK, Kim JH, Lee JH, Kim JO, Cho SH, Park H, Kim MN, Rim KS, Hwang SG (2015) Association between hepatocellular carcinoma and tumor necrosis factor alpha polymorphisms in South Korea. World J Gastroenterol 21(46):13064–13072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu Y, Cheng Y, Guo Y, Chen J, Chen F, Luo R, Li A (2016) Protein kinase D2 contributes to TNF-α-induced epithelial mesenchymal transition and invasion via the PI3K/GSK-3β/β-catenin pathway in hepatocellular carcinoma. Oncotarget 7(5):5327–5341

    PubMed  Google Scholar 

  10. Peltzer N, Darding M, Walczak H (2016) Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol 26(6):445–461

    Article  CAS  PubMed  Google Scholar 

  11. Al-Lamki RS, Mayadas TN (2015) TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int 87(2):281–296

    Article  CAS  PubMed  Google Scholar 

  12. Kim YC, Mungunsukh O, McCart EA, Roehrich PJ, Yee DK, Day RM (2014) Mechanism of erythropoietin regulation by angiotensin II. Mol Pharmacol 85(6):898–908

    Article  PubMed  Google Scholar 

  13. Chow BS, Allen TJ (2016) Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci (Lond) 130(15):1307–1326

    Article  CAS  Google Scholar 

  14. Sun L, Shi J (2016) Advance in research of angiotensin II and its receptor and malignant tumor. Zhongguo Fei Ai Za Zhi 19(9):615–619

    PubMed  Google Scholar 

  15. Yu X, Sha J, Xiang S, Qin S, Conrad P, Ghosh SK, Weinberg A, Ye F (2016) Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth. Cell Cycle 15(15):2053–2065

    Article  CAS  PubMed  Google Scholar 

  16. Feigin ME, Xue B, Hammell MC, Muthuswamy SK (2014) G-protein-coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion. Proc Natl Acad Sci USA 111(11):4191–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khalil BD, Hsueh C, Cao Y, Abi Saab WF, Wang Y, Condeelis JS, Bresnick AR, Backer JM (2016) GPCR signaling mediates tumor metastasis via PI3Kβ. Cancer Res 76(10):2944–2953

    Article  CAS  PubMed  Google Scholar 

  18. Zheng M, Zhang X, Guo S, Zhang X, Min C, Cheon SH, Oak MH, Kim YR, Kim KM (2016) Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors. Biochem Biophys Acta 1863(1):77–90

    Article  CAS  PubMed  Google Scholar 

  19. Tutunea-Fatan E, Caetano FA, Gros R, Ferguson SS (2015) GRK2 targeted knock-down results in spontaneous hypertension, and altered vascular GPCR signaling. J Biol Chem 290(8):5141–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei Z, Hurtt R, Ciccarelli M, Koch WJ, Doria C (2012) Growth inhibition of human hepatocellular carcinoma cells by overexpression of G-protein-coupled receptor kinase 2. J Cell Physiol 227(6):2371–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Y, Han CC, Huang Q, Sun WY, Wei W (2016) GRK2 overexpression inhibits IGF1-induced proliferation and migration of human hepatocellular carcinoma cells by down-regulating EGR1. Oncol Rep 35(5):3068–3074

    CAS  PubMed  Google Scholar 

  22. Wu H, Chen J, Song S, Yuan P, Liu L, Zhang Y, Zhou A, Chang Y, Zhang L, Wei W (2016) β2-adrenoceptor signaling reduction in dendritic cells is involved in the inflammatory response in adjuvant-induced arthritic rats. Sci Rep 15(6):24548–24558

    Article  Google Scholar 

  23. Taguchi K, Matsumoto T, Kamata K, Kobayashi T (2013) Suppressed G-protein- coupled receptor kinase 2 activity protects female diabetic-mouse aorta against endothelial dysfunction. Acta Physiol (Oxf) 207(1):142–155

    Article  CAS  Google Scholar 

  24. Ku HK, Lim HM, Oh KH, Yang HJ, Jeong JS, Kim SK (2013) Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models. Anal Biochem 434(1):178–180

    Article  CAS  PubMed  Google Scholar 

  25. Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW, Zender L, Greten TF (2016) Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30(4):533–547

    Article  CAS  PubMed  Google Scholar 

  26. Cui X, Lin Z, Chen Y, Mao X, Ni W, Liu J, Zhou H, Shan X, Chen L, Lv J, Shen Z, Duan C, Hu B, Ni R (2016) Upregulated TRIM32 correlates with enhanced cell proliferation and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem 421(1–2):127–137

    Article  CAS  PubMed  Google Scholar 

  27. Yan SR, Liu ZJ, Yu S, Bao YX (2015) Investigation of the value of miR-21 in the diagnosis of early stage HCC and its prognosis: a meta-analysis. Genet Mol Res 14(3):11573–11586

    Article  CAS  PubMed  Google Scholar 

  28. Aroucha DC, Carmo RF, Vasconcelos LR, Lima RE, Mendonça TF, Arnez LE, Cavalcanti Mdo S, Muniz MT, Aroucha ML, Siqueira ER, Pereira LB, Moura P, Pereira LM, Coêlho MR (2016) TNF-α and IL-10 polymorphisms increase the risk to hepatocellular carcinoma in HCV infected individuals. J Med Virol 88(9):1587–1595

    Article  CAS  PubMed  Google Scholar 

  29. Mao J, Wang D, Wang Z, Tian W, Li X, Duan J, Wang Y, Yang H, You L, Cheng Y, Bian J, Chen Z, Yang Y (2016) Combretastatin A-1 phosphate, a microtubule inhibitor, acts on both hepatocellular carcinoma cells and tumor-associated macrophages by inhibiting the Wnt/β-catenin pathway. Cancer Lett 380(1):134–143

    Article  CAS  PubMed  Google Scholar 

  30. Xu X, Lu D, Zhuang R, Wei X, Xie H, Wang C, Zhu Y, Wang J, Zhong C, Zhang X, Wei Q, He Z, Zhou L, Zheng S (2016) The phospholipase A2 activity of peroxiredoxin 6 promotes cancer cell death induced by tumor necrosis factor alpha in hepatocellular carcinoma. Mol Carcinog 55(9):1299–1308

    Article  CAS  PubMed  Google Scholar 

  31. Miyahara K, Nouso K, Morimoto Y, Takeuchi Y, Hagihara H, Kuwaki K, Onishi H, Ikeda F, Miyake Y, Nakamura S, Shiraha H, Takaki A, Honda M, Kaneko S, Sato T, Sato S, Obi S, Iwadou S, Kobayashi Y, Takaguchi K, Kariyama K, Takuma Y, Takabatake H, Yamamoto K, Okayama Liver Cancer Group (2013) Pro-angiogenic cytokines for prediction of outcomes in patients with advanced hepatocellular carcinoma. Br J Cancer 109(8):2072–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu L, Carretero OA, Xu J, Harding P, Ramadurai N, Gu X, Peterson E, Yang XP (2015) Activation of angiotensin II type 2 receptor suppresses TNF-α-induced ICAM-1 via NF-кB: possible role of ACE2. Am J Physiol Heart Circ Physiol 309(5):827–834

    Google Scholar 

  33. Wu TC, Lee CY, Lin SJ, Chen JW (2016) Aliskiren inhibits neointimal matrix metalloproteinases in experimental atherosclerosis. Acta Cardiol Sin 32(5):586–593

    PubMed  PubMed Central  Google Scholar 

  34. Wei Z, Hurtt R, Gu T, Bodzin AS, Koch WJ, Doria C (2013) GRK2 negatively regulates IGF-1R signaling pathway and cyclins’ expression in HepG2 cells. J Cell Physiol 228(9):1897–1901

    Article  CAS  PubMed  Google Scholar 

  35. Shao X, Liu Y, Huang H, Zhuang L, Luo T, Huang H, Ge X (2015) Down-regulation of G protein-coupled receptor 137 by RNA interference inhibits cell growth of two hepatoma cell lines. Cell Biol Int 39(4):418–426

    Article  CAS  PubMed  Google Scholar 

  36. Lin JZ, Meng LL, Li YZ, Chen SX, Xu JL, Tang YJ, Lin N (2016) Importance of activated hepatic stellate cells and angiopoietin-1 in the pathogenesis of hepatocellular carcinoma. Mol Med Rep 14(2):1721–1725

    CAS  PubMed  Google Scholar 

  37. Lewandowski RJ, Andreoli JM, Hickey R, Kallini JR, Gabr A, Baker T, Kircher S, Salem R, Kulik L (2016) Angiogenic response following radioembolization: results from a randomized pilot study of yttrium-90 with or without sorafenib. J Vasc Interv Radiol 27(9):1329–1336

    Article  PubMed  Google Scholar 

  38. Liu Y, Li B, Wang X, Li G, Shang R, Yang J, Wang J, Zhang M, Chen Y, Zhang Y, Zhang C, Hao P (2015) Angiotensin-(1–7) suppresses hepatocellular carcinoma growth and angiogenesis via complex interactions of angiotensin II type 1 receptor, angiotensin II type 2 receptor and Mas receptor. Mol Med 21(1):626–636

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff members of the Institute of Clinical Pharmacology, Anhui Medical University, for their assistance in conducting the study.

Funding

This study was supported by the Natural Science Foundation of China (Nos. 81330081, 81302784) and the Natural Science Foundation of Anhui Province (No. 1508085MH182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Zw., Yan, Sx., Wu, Hx. et al. The influence of TNF-α and Ang II on the proliferation, migration and invasion of HepG2 cells by regulating the expression of GRK2. Cancer Chemother Pharmacol 79, 747–758 (2017). https://doi.org/10.1007/s00280-017-3267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3267-z

Keywords

Navigation