Skip to main content

Advertisement

Log in

Expression of M2 macrophage markers YKL-39 and CCL18 in breast cancer is associated with the effect of neoadjuvant chemotherapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

High activity of enzyme TOP2a in tumor cells is known to be associated with sensitivity to anthracycline chemotherapy, but 20% of such patients do not show clinical response. Tumor microenvironment, including tumor-associated macrophages (TAM), is an essential factor defining the efficiency of chemotherapy. In the present study, we analyzed the expression of M2 macrophage markers, YKL-39 and CCL18, in tumors of breast cancer patients received anthracycline-based NAC.

Methods

Patients were divided into two groups according to the level of doxorubicin sensitivity marker TOP2a: DOX-Sense and DOX-Res groups. Expression levels of TOR2a, CD68, YKL-39 and CCL18 genes were analyzed by qPCR, the amplification of TOR2a gene locus was assessed by the microarray assay. Clinical and pathological responses to neoadjuvant chemotherapy were assessed.

Results

We found that the average level of TOP2a expression in patients of DOX-Sense group was almost 10 times higher than in patients of DOX-Res group, and the expression of CD68 was 3 times higher in the DOX-Sense group compared to DOX-Res group. We demonstrated that expression levels of M2-derived cytokines but not the amount of TAM is indicative for clinical and pathological chemotherapy efficacy in breast cancer patients. Out of 8 patients from DOX-Sense group who did not respond to neoadjuvant chemotherapy (NAC), 7 patients had M2+ macrophage phenotype (YKL-39+CCL18 or YKL-39CCL18+) and only one patient had M2− macrophage phenotype (YKL-39CCL18). In DOX-Res group, out of 14 patients who clinically responded to NAC 9 patients had M2− phenotype and only 5 patients had M2+ macrophage phenotype. Among pathological non-responders in DOX-Sense group, 19 (82%) patients had M2+ tumor phenotype and only 4 (18%) patients had M2− phenotype. In DOX-Res group, all 5 patients who pathologically responded to NAC had M2 phenotype (YKL-39CCL18). Unlike the clinical response to NAC, the differences in the frequency of M2+ and M2− phenotypes between pathologically responding and non-responding patients within DOX-Sense and DOX-Res groups were statistically significant.

Conclusions

Thus, we showed that in patients with breast cancer who received anthracycline-containing NAC the absence of clinical response is associated with the presence of M2+ macrophage phenotype (YKL-39-CCL18 + or YKL-39 + CCL18-) based on TOP2a overexpression data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Squires H, Pandor A, Thokala P, Stevens JW, Kaltenthaler E, Clowes M, Coleman R, Wyld L (2017) Pertuzumab for the neoadjuvant treatment of early-stage HER2-positive breast cancer: an evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics. https://doi.org/10.1007/s40273-017-0556-7

    Article  Google Scholar 

  2. Rubovszky G, Horváth Z (2017) Recent advances in the neoadjuvant treatment of breast cancer. J Breast Cancer 20(2):119–131. https://doi.org/10.4048/jbc.2017.20.2.119

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaufmann M, von Minckwitz G, Mamounas EP, Cameron D, Carey LA, Cristofanilli M, Denkert C, Eiermann W, Gnant M, Harris JR (2012) Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol 19(5):1508–1516. https://doi.org/10.1245/s10434-011-2108-2

    Article  PubMed  Google Scholar 

  4. El Rebey HS, Aiad HA, Abulkheir IL, Asaad NY, El-Wahed M, Abulkasem FM, Mahmoud SF (2016) The predictive and prognostic role of topoisomerase iiα and tissue inhibitor of metalloproteinases 1 expression in locally advanced breast carcinoma of Egyptian patients treated with anthracycline-based neoadjuvant chemotherapy. Appl Immunohistochem Mol Morphol 24(3):167–178. https://doi.org/10.1097/PAI.0000000000000154

    Article  PubMed  CAS  Google Scholar 

  5. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5):338–350. https://doi.org/10.1038/nrc2607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Knoop AS, Knudsen H, Balslev E, Rasmussen BB, Overgaard J, Nielsen KV, Schonau A, Gunnarsdóttir K, Olsen KE, Mouridsen H (2005) Retrospective analysis of topoisomerase IIa amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil: Danish Breast Cancer Cooperative Group. J Clin Oncol 23(30):7483–7490. https://doi.org/10.1200/JCO.2005.11.007

    Article  PubMed  CAS  Google Scholar 

  7. Munro A, Cameron D, Bartlett J (2010) Targeting anthracyclines in early breast cancer: new candidate predictive biomarkers emerge. Oncogene 29(38):5231–5240. https://doi.org/10.1038/onc.2010.286

    Article  PubMed  CAS  Google Scholar 

  8. Konecny GE, Pauletti G, Untch M, Wang HJ, Mobus V, Kuhn W, Thomssen C, Harbeck N, Wang L, Apple S, Janicke F, Slamon DJ (2010) Association between HER2, TOP2A, and response to anthracycline-based preoperative chemotherapy in high-risk primary breast cancer. Breast Cancer Res Treat 120(2):481–489. https://doi.org/10.1007/s10549-010-0744-z

    Article  PubMed  CAS  Google Scholar 

  9. Nikolényi A, Sükösd F, Kaizer L, Csörgő E, Vörös A, Uhercsák G, Ormándi K, Lázár G, Thurzó L, Brodowicz T (2011) Tumor topoisomerase II alpha status and response to anthracycline-based neoadjuvant chemotherapy in breast cancer. Oncology 80(3–4):269–277. https://doi.org/10.1159/000329038

    Article  PubMed  CAS  Google Scholar 

  10. Schindlbeck C, Janni W, Shabani N, Kornmeier A, Rack B, Rjosk D, Gerber B, Braun S, Sommer H, Friese K (2005) Isolated tumor cells in the bone marrow (ITC-BM) of breast cancer patients before and after anthracyclin based therapy: influenced by the HER2-and Topoisomerase IIα-status of the primary tumor? J Cancer Res Clin Oncol 131(8):539 – 46. https://doi.org/10.1007/s00432-005-0683-y

    Article  PubMed  CAS  Google Scholar 

  11. Kazantseva PV, Tsyganov ММ, Slonimskaya ЕМ, Litvyakov NV, Cherdyntseva NV, Ibragimova МK, Doroshenko АV, Tarabanovskaya N, Patalyak SV (2016) Molecular-genetic markers of response to neoadjuvant chemotherapy with anthracyclines in breast cancer patients. Sib J Oncol 15(2):29–35. https://doi.org/10.21294/1814-4861-2016-15-2-29-35

    Article  Google Scholar 

  12. Arpino G, Ciocca DR, Weiss H, Allred DC, Daguerre P, Vargas-Roig L, Leuzzi M, Gago F, Elledge R, Mohsin SK (2005) Predictive value of apoptosis, proliferation, HER-2, and topoisomerase IIalpha for anthracycline chemotherapy in locally advanced breast cancer. Breast Cancer Res Treat 92(1):69–75. https://doi.org/10.1007/s10549-005-1721-9

    Article  PubMed  CAS  Google Scholar 

  13. Stakheyeva M, Riabov V, Mitrofanova I, Litviakov N, Choynzonov E, Cherdyntseva N, Kzhyshkowska J (2017) Role of the immune component of tumor microenvironment in the efficiency of cancer treatment: perspectives for the personalized therapy. Curr Pharm Des. https://doi.org/10.2174/1381612823666170714161703

    Article  PubMed  Google Scholar 

  14. Mitrofanova I, Zavyalova M, Telegina N, Buldakov M, Riabov V, Cherdyntseva N, Kzhyshkowska J (2017) Tumor-associated macrophages in human breast cancer parenchyma negatively correlate with lymphatic metastasis after neoadjuvant chemotherapy. Immunobiology 222(1):101–109. https://doi.org/10.1016/j.imbio.2016.08.001

    Article  PubMed  CAS  Google Scholar 

  15. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75. https://doi.org/10.3389/fphys.2014.00075

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Mantovani A, Polentarutti N, Luini W, Peri G, Spreafico F (1979) Role of host defense mechanisms in the antitumor activity of adriamycin and daunomycin in mice. J Natl Cancer Inst 63(1):61–66

    PubMed  CAS  Google Scholar 

  18. Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212(4):435–445. https://doi.org/10.1084/jem.20150295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dijkgraaf EM, Heusinkveld M, Tummers B, Vogelpoel LT, Goedemans R, Jha V, Nortier JW, Welters MJ, Kroep JR, van der Burg SH (2013) Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res 73(8):2480–2492. https://doi.org/10.1158/0008-5472.CAN-12-3542

    Article  PubMed  CAS  Google Scholar 

  20. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res 73(3):1128–1141. https://doi.org/10.1158/0008-5472.CAN-12-2731

    Article  PubMed  CAS  Google Scholar 

  21. Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q (2014) B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25(6):809–821. https://doi.org/10.1016/j.ccr.2014.04.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. https://doi.org/10.1158/2159-8274.CD-10-0028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Schwartz GF, Hortobagyi GN (2004) Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Cancer 100(12):2512–2532. https://doi.org/10.1002/cncr.20298

    Article  PubMed  Google Scholar 

  24. Wolff AC, Hammond MEH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131(1):18–43. https://doi.org/10.1043/1543-2165(2007)131[18:ASOCCO]2.0.CO;2

    PubMed  CAS  Google Scholar 

  25. Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, Schofield A, Heys SD (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12(5):320–327

    Article  PubMed  Google Scholar 

  26. Hayward JL, Carbone PP, Heuson JC, Kumaoka S, Segaloff A, Rubens RD (1977) Assessment of response to therapy in advanced breast cancer: a project of the Programme on Clinical Oncology of the International Union Against Cancer, Geneva, Switzerland. Cancer 39(3):1289–1294

    Article  PubMed  CAS  Google Scholar 

  27. Cai H, Kumar N, Baudis M (2012) arraymap: A reference resource for genomic copy number imbalances in human malignancies. PLoS One 7(5):e36944. https://doi.org/10.1371/journal.pone.0036944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Litviakov NV, Cherdyntseva NV, Tsyganov MM, Denisov EV, Garbukov EY, Merzliakova MK, Volkomorov VV, Vtorushin SV, Zavyalova MV, Slonimskaya EM (2013) Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol 71(1):153–163. https://doi.org/10.1007/s00280-012-1992-x

    Article  PubMed  CAS  Google Scholar 

  29. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265. https://doi.org/10.1002/path.1027

    Article  PubMed  CAS  Google Scholar 

  32. De Palma M, Lewis CE (2011) Cancer: macrophages limit chemotherapy. Nature 472(7343):303–304. https://doi.org/10.1038/472303a

    Article  PubMed  CAS  Google Scholar 

  33. Hughes R, Qian B-Z, Rowan C, Muthana M, Keklikoglou I, Olson OC, Tazzyman S, Danson S, Addison C, Clemons M (2015) Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 75(17):3479–3491. https://doi.org/10.1158/0008-5472.CAN-14-3587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ibragimova M, Tsyganov M, Litviakov N (2017) Natural and chemotherapy-induced clonal evolution of tumors. Biochemistry 82(4):413–425. https://doi.org/10.1134/S0006297917040022

    Article  PubMed  CAS  Google Scholar 

  35. Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74–88. https://doi.org/10.1016/j.immuni.2013.06.014

    Article  PubMed  CAS  Google Scholar 

  36. Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B, Katsanis E, Larmonier N (2014) Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74(1):104–118. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  37. Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21(1):15–25. https://doi.org/10.1038/cdd.2013.67

    Article  PubMed  CAS  Google Scholar 

  38. Litviakov N, Cherdyntseva N, Tsyganov M, Slonimskaya E, Ibragimova M, Kazantseva P, Kzhyshkowska J, Choinzonov E (2016) Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget 7(7):7829–7841. https://doi.org/10.18632/oncotarget.6953

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19(4):541–555. https://doi.org/10.1016/j.ccr.2011.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lin L, Chen Y-S, Yao Y-D, Chen J-Q, Chen J-N, Huang S-Y, Zeng Y-J, Yao H-R, Zeng S-H, Fu Y-S (2015) CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget 6(33):34758–34773. https://doi.org/10.18632/oncotarget.5325

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572. https://doi.org/10.1038/nri.2017.49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kzhyshkowska J, Yin S, Liu T, Riabov V, Mitrofanova I (2016) Role of chitinase-like proteins in cancer. Biol Chem 397(3):231–247. https://doi.org/10.1515/hsz-2015-0269

    Article  PubMed  CAS  Google Scholar 

  43. Kzhyshkowska J, Gratchev A, Goerdt S (2007) Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark Insights 2:128–146

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shao R, Hamel K, Petersen L, Cao JQ, Arenas RB, Bigelow C, Bentley B, Yan W (2009) YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 28(50):4456–4468. https://doi.org/10.1038/onc.2009.292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, Popova A, Yu X, Mamidi S, Stonehouse-Usselmann E, Muller-Molinet I, Gooi L (2008) Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol 180(10):6553–6565. https://doi.org/10.4049/jimmunol.180.10.6553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Scientific Foundation, Grant #14-15-00350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kzhyshkowska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litviakov, N., Tsyganov, M., Larionova, I. et al. Expression of M2 macrophage markers YKL-39 and CCL18 in breast cancer is associated with the effect of neoadjuvant chemotherapy. Cancer Chemother Pharmacol 82, 99–109 (2018). https://doi.org/10.1007/s00280-018-3594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3594-8

Keywords

Navigation