Skip to main content

Advertisement

Log in

An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a chronic progressive, painful disease of synovial joints, characterized by cartilage degradation, subchondral bone remodeling, osteophyte formation, and synovitis. It is now widely appreciated that the innate immune system, and in particular Toll-like receptors (TLRs), contributes to pathological changes in OA joint tissues. Furthermore, it is now also increasingly recognized that TLR signaling plays a key role in initiating and maintaining pain. Here, we reviewed the literature of the past 5 years with a focus on how TLRs may contribute to joint damage and pain in OA. We discuss biological effects of specific damage-associated molecular patterns (DAMPs) which act as TLR ligands in vitro, including direct effects on pain-sensing neurons. We then discuss the phenotype of transgenic mice that target TLR pathways, and provide evidence for a complex balance between pro- and anti-inflammatory signaling pathways activated by OA DAMPs. Finally, we summarize clinical evidence implicating TLRs in OA pathogenesis, including polymorphisms and surrogate markers of disease activity. Our review of the literature led us to propose a model where multi-directional crosstalk between connective tissue cells (chondrocytes, fibroblasts), innate immune cells, and sensory neurons in the affected joint may promote OA pathology and pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Collaborators GDaIIaP (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1211–1259

    Article  Google Scholar 

  2. Puig-Junoy J, Ruiz Zamora A (2015) Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44(5):531–541

    Article  PubMed  Google Scholar 

  3. Hawker GA, Croxford R, Bierman AS, Harvey PJ, Ravi B, Stanaitis I, Lipscombe LL (2014) All-cause mortality and serious cardiovascular events in people with hip and knee osteoarthritis: a population based cohort study. PLoS One 9(3):e91286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ravi B, Croxford R, Reichmann WM, Losina E, Katz JN, Hawker GA (2012) The changing demographics of total joint arthroplasty recipients in the United States and Ontario from 2001 to 2007. Best Pract Res Clin Rheumatol 26(5):637–647

    Article  PubMed  Google Scholar 

  5. Ackerman IN, Kemp JL, Crossley KM, Culvenor AG, Hinman RS (2017) Hip and knee osteoarthritis affects younger people, too. J Orthop Sports Phys Ther 47(2):67–79

    Article  PubMed  Google Scholar 

  6. Castagnini F, Sudanese A, Bordini B, Tassinari E, Stea S, Toni A (2017) Total knee replacement in young patients: survival and causes of revision in a registry population. J Arthroplast 32(11):3368–3372

    Article  Google Scholar 

  7. Orlowsky EW, Kraus VB (2015) The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol 42(3):363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scanzello CR (2017) Role of low-grade inflammation in osteoarthritis. Curr Opin Rheumatol 29(1):79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Syx D, Tran PB, Miller RE, Malfait AM (2018) Peripheral mechanisms contributing to osteoarthritis pain. Curr Rheumatol Rep 20(2):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Neogi T (2017) Structural correlates of pain in osteoarthritis. Clin Exp Rheumatol 35 Suppl 107(5):75–78

    PubMed  Google Scholar 

  11. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woller SA, Eddinger KA, Corr M, Yaksh TL (2018) An overview of pathways encoding nociception. Clin Exp Rheumatol 36(1):172

    PubMed  Google Scholar 

  13. Matsuda M, Huh Y, Ji RR (2019) Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth 33(1):131–139

    Article  PubMed  Google Scholar 

  14. Denk F, Bennett DL, McMahon SB (2017) Nerve growth factor and pain mechanisms. Annu Rev Neurosci 40:307–325

    Article  CAS  PubMed  Google Scholar 

  15. Pinho-Ribeiro FA, Verri WA Jr, Chiu IM (2017) Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 38(1):5–19

    Article  CAS  PubMed  Google Scholar 

  16. Miller RE, Tran PB, Das R, Ghoreishi-Haack N, Ren D, Miller RJ, Malfait AM (2012) CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci U S A 109(50):20602–20607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nefla M, Holzinger D, Berenbaum F, Jacques C (2016) The danger from within: alarmins in arthritis. Nat Rev Rheumatol 12(11):669–683

    Article  CAS  PubMed  Google Scholar 

  18. Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158

    Article  CAS  PubMed  Google Scholar 

  19. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sokolove J, Lepus CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5(2):77–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Bosch MHJ (2019) Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin Exp Immunol 195(2):153–166

    Article  PubMed  Google Scholar 

  22. Gomez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G (2015) TLR4 signalling in osteoarthritis--finding targets for candidate DMOADs. Nat Rev Rheumatol 11(3):159–170

    Article  CAS  PubMed  Google Scholar 

  23. Rosenthal AK (2011) Crystals, inflammation, and osteoarthritis. Curr Opin Rheumatol 23(2):170–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller RE, Belmadani A, Ishihara S, Tran PB, Ren D, Miller RJ, Malfait AM (2015) Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through Toll-like receptor 4. Arthritis Rheumatol 67(11):2933–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wadachi R, Hargreaves KM (2006) Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res 85(1):49–53

    Article  CAS  PubMed  Google Scholar 

  26. Guerrero AT, Pinto LG, Cunha FQ, Ferreira SH, Alves-Filho JC, Verri WA Jr, Cunha TM (2016) Mechanisms underlying the hyperalgesic responses triggered by joint activation of TLR4. Pharmacol Rep 68(6):1293–1300

    Article  CAS  PubMed  Google Scholar 

  27. Tortorella MD, Malfait AM (2008) Will the real aggrecanase(s) step up: evaluating the criteria that define aggrecanase activity in osteoarthritis. Curr Pharm Biotechnol 9(1):16–23

    Article  CAS  PubMed  Google Scholar 

  28. Fosang AJ, Neame PJ, Hardingham TE, Murphy G, Hamilton JA (1991) Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins. J Biol Chem 266(24):15579–15582

    Article  CAS  PubMed  Google Scholar 

  29. Lees S, Golub SB, Last K, Zeng W, Jackson DC, Sutton P, Fosang AJ (2015) Bioactivity in an aggrecan 32-mer fragment is mediated via Toll-like receptor 2. Arthritis Rheumatol 67(5):1240–1249

    Article  CAS  PubMed  Google Scholar 

  30. Little CB, Meeker CT, Golub SB, Lawlor KE, Farmer PJ, Smith SM, Fosang AJ (2007) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 117(6):1627–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller RE, Ishihara S, Tran PB, Golub SB, Last K, Miller RJ, Fosang AJ, Malfait AM (2018) An aggrecan fragment drives osteoarthritis pain through Toll-like receptor 2. JCI Insight 3:6

    Google Scholar 

  32. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Gotte M et al (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115(8):2223–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng-Brouwers J, Beckmann J, Nastase MV, Iozzo RV, Schaefer L (2014) De novo expression of circulating biglycan evokes an innate inflammatory tissue response via MyD88/TRIF pathways. Matrix Biol 35:132–142

    Article  CAS  PubMed  Google Scholar 

  34. Barreto G, Soininen A, Ylinen P, Sandelin J, Konttinen YT, Nordstrom DC, Eklund KK (2015) Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res Ther 17:379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Avenoso A, D'Ascola A, Scuruchi M, Mandraffino G, Calatroni A, Saitta A, Campo S, Campo GM (2018) The proteoglycan biglycan mediates inflammatory response by activating TLR-4 in human chondrocytes: inhibition by specific siRNA and high polymerized Hyaluronan. Arch Biochem Biophys 640:75–82

    Article  CAS  PubMed  Google Scholar 

  36. Poluzzi C, Nastase MV, Zeng-Brouwers J, Roedig H, Hsieh LT, Michaelis JB, Buhl EM, Rezende F, Manavski Y, Bleich A et al (2019) Biglycan evokes autophagy in macrophages via a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. Kidney Int 95(3):540–562

    Article  CAS  PubMed  Google Scholar 

  37. Roedig H, Nastase MV, Wygrecka M, Schaefer L (2019) Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS J 286:2965–2979

    Article  CAS  PubMed  Google Scholar 

  38. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chockalingam PS, Glasson SS, Lohmander LS (2013) Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthr Cartil 21(2):339–345

    Article  CAS  Google Scholar 

  40. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–780

    Article  CAS  PubMed  Google Scholar 

  41. Zuliani-Alvarez L, Marzeda AM, Deligne C, Schwenzer A, McCann FE, Marsden BD, Piccinini AM, Midwood KS (2017) Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat Commun 8(1):1595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A, Imanaka-Yoshida K, Yoshida T, Uchida A (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthr Cartil 18(6):839–848

    Article  CAS  Google Scholar 

  43. Matsui Y, Hasegawa M, Iino T, Imanaka-Yoshida K, Yoshida T, Sudo A (2018) Tenascin-C prevents articular cartilage degeneration in murine osteoarthritis models. Cartilage 9(1):80–88

    Article  CAS  PubMed  Google Scholar 

  44. Kato J, Agalave NM, Svensson CI (2016) Pattern recognition receptors in chronic pain: mechanisms and therapeutic implications. Eur J Pharmacol 788:261–273

    Article  CAS  PubMed  Google Scholar 

  45. Liu XJ, Liu T, Chen G, Wang B, Yu XL, Yin C, Ji RR (2016) TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation. Sci Rep 6:28188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nasi S, Ea HK, Chobaz V, van Lent P, Liote F, So A, Busso N (2014) Dispensable role of myeloid differentiation primary response gene 88 (MyD88) and MyD88-dependent toll-like receptors (TLRs) in a murine model of osteoarthritis. Joint Bone Spine 81(4):320–324

    Article  CAS  PubMed  Google Scholar 

  47. Stokes JA, Cheung J, Eddinger K, Corr M, Yaksh TL (2013) Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice. J Neuroinflammation 10:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Christianson CA, Dumlao DS, Stokes JA, Dennis EA, Svensson CI, Corr M, Yaksh TL (2011) Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain 152(12):2881–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sambamurthy N, Zhou C, Nguyen V, Smalley R, Hankenson KD, Dodge GR, Scanzello CR (2018) Deficiency of the pattern-recognition receptor CD14 protects against joint pathology and functional decline in a murine model of osteoarthritis. PLoS One 13(11):e0206217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Inglis JJ, McNamee KE, Chia SL, Essex D, Feldmann M, Williams RO, Hunt SP, Vincent T (2008) Regulation of pain sensitivity in experimental osteoarthritis by the endogenous peripheral opioid system. Arthritis Rheum 58(10):3110–3119

    Article  CAS  PubMed  Google Scholar 

  51. Blom AB, van Lent PL, Abdollahi-Roodsaz S, van der Kraan PM, van den Berg WB: Toll like receptor-2 prevents cartilage damage in osteoarthritis models that display synovial activation. In: Orthopaedic Research Society annual meeting. San Francisco; 2012

  52. Schelbergen RF, de Munter W, van den Bosch MH, Lafeber FP, Sloetjes A, Vogl T, Roth J, van den Berg WB, van der Kraan PM, Blom AB et al (2016) Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann Rheum Dis 75(1):218–225

    Article  CAS  PubMed  Google Scholar 

  53. van Lent PL, Blom AB, Schelbergen RF, Sloetjes A, Lafeber FP, Lems WF, Cats H, Vogl T, Roth J, van den Berg WB (2012) Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum 64(5):1466–1476

    Article  PubMed  CAS  Google Scholar 

  54. Schelbergen RF, Geven EJ, van den Bosch MH, Eriksson H, Leanderson T, Vogl T, Roth J, van de Loo FA, Koenders MI, van der Kraan PM et al (2015) Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann Rheum Dis 74(12):2254–2258

    Article  CAS  PubMed  Google Scholar 

  55. Liu-Bryan R, Pritzker K, Firestein GS, Terkeltaub R (2005) TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol 174(8):5016–5023

    Article  CAS  PubMed  Google Scholar 

  56. Su SL, Tsai CD, Lee CH, Salter DM, Lee HS (2005) Expression and regulation of Toll-like receptor 2 by IL-1beta and fibronectin fragments in human articular chondrocytes. Osteoarthr Cartil 13(10):879–886

    Article  Google Scholar 

  57. Kim HA, Cho ML, Choi HY, Yoon CS, Jhun JY, Oh HJ, Kim HY (2006) The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum 54(7):2152–2163

    Article  CAS  PubMed  Google Scholar 

  58. Hwang HS, Park SJ, Cheon EJ, Lee MH, Kim HA (2015) Fibronectin fragment-induced expression of matrix metalloproteinases is mediated by MyD88-dependent TLR-2 signaling pathway in human chondrocytes. Arthritis Res Ther 17:320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang Q, Hui W, Litherland GJ, Barter MJ, Davidson R, Darrah C, Donell ST, Clark IM, Cawston TE, Robinson JH, Rowan AD, Young DA (2008) Differential Toll-like receptor-dependent collagenase expression in chondrocytes. Ann Rheum Dis 67(11):1633–1641

    Article  CAS  PubMed  Google Scholar 

  60. Sillat T, Barreto G, Clarijs P, Soininen A, Ainola M, Pajarinen J, Korhonen M, Konttinen YT, Sakalyte R, Hukkanen M, Ylinen P, Nordström DCE (2013) Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop 84(6):585–592

    Article  PubMed  PubMed Central  Google Scholar 

  61. Barreto G, Sandelin J, Salem A, Nordstrom DC, Waris E (2017) Toll-like receptors and their soluble forms differ in the knee and thumb basal osteoarthritic joints. Acta Orthop 88(3):326–333

    Article  PubMed  PubMed Central  Google Scholar 

  62. Su SL, Yang HY, Lee CH, Huang GS, Salter DM, Lee HS (2012) The (-1486T/C) promoter polymorphism of the TLR-9 gene is associated with end-stage knee osteoarthritis in a Chinese population. J Orthop Res 30(1):9–14

    Article  CAS  PubMed  Google Scholar 

  63. Balbaloglu O, Sabah Ozcan S, Korkmaz M, Yilmaz N (2017) Promoter polymorphism (T-1486C) of TLR-9 gene is associated with knee osteoarthritis in a Turkish population. J Orthop Res 35(11):2484–2489

    Article  CAS  PubMed  Google Scholar 

  64. Yang HY, Lee HS, Lee CH, Fang WH, Chen HC, Salter DM, Su SL (2013) Association of a functional polymorphism in the promoter region of TLR-3 with osteoarthritis: a two-stage case-control study. J Orthop Res 31(5):680–685

    Article  CAS  PubMed  Google Scholar 

  65. Li C, Chen K, Kang H, Yan Y, Liu K, Guo C, Qi J, Yang K, Wang F, Guo L, He C, Deng L (2017) Double-stranded RNA released from damaged articular chondrocytes promotes cartilage degeneration via Toll-like receptor 3-interleukin-33 pathway. Cell Death Dis 8(11):e3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang ZY, Stabler T, Pei FX, Kraus VB (2016) Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation. Osteoarthr Cartil 24(10):1769–1775

    Article  CAS  Google Scholar 

  67. Huang Z, Kraus VB (2016) Does lipopolysaccharide-mediated inflammation have a role in OA? Nat Rev Rheumatol 12(2):123–129

    Article  CAS  PubMed  Google Scholar 

  68. Kalaitzoglou E, Lopes EBP, Fu Y, Herron JC, Flaming JM, Donovan EL, Hu Y, Filiberti A, Griffin TM, Humphrey MB (2019) TLR4 promotes and DAP12 limits obesity-induced osteoarthritis in aged female mice. JBMR Plus 3(4):e10079

    Article  PubMed  CAS  Google Scholar 

  69. Guss JD, Ziemian SN, Luna M, Sandoval TN, Holyoak DT, Guisado GG, Roubert S, Callahan RL, Brito IL, van der Meulen MCH, Goldring SR, Hernandez CJ (2019) The effects of metabolic syndrome, obesity, and the gut microbiome on load-induced osteoarthritis. Osteoarthr Cartil 27(1):129–139

    Article  CAS  Google Scholar 

  70. Lloyd-Jones KL, Kelly MM, Kubes P (2008) Varying importance of soluble and membrane CD14 in endothelial detection of lipopolysaccharide. J Immunol 181(2):1446–1453

    Article  CAS  PubMed  Google Scholar 

  71. Nair A, Kanda V, Bush-Joseph C, Verma N, Chubinskaya S, Mikecz K, Glant TT, Malfait AM, Crow MK, Spear GT, Finnegan A, Scanzello CR (2012) Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to toll-like receptor 4 and toll-like receptor 2 ligands via soluble CD14. Arthritis Rheum 64(7):2268–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daghestani HN, Pieper CF, Kraus VB (2015) Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol 67(4):956–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang ZY, Perry E, Huebner JL, Katz B, Li YJ, Kraus VB (2018) Biomarkers of inflammation - LBP and TLR- predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthr Cartil 26(12):1658–1665

    Article  CAS  Google Scholar 

  74. Brandt KD, Mazzuca SA, Katz BP, Lane KA, Buckwalter KA, Yocum DE, Wolfe F, Schnitzer TJ, Moreland LW, Manzi S, Bradley JD, Sharma L, Oddis CV, Hugenberg ST, Heck LW (2005) Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum 52(7):2015–2025

    Article  CAS  PubMed  Google Scholar 

  75. Krock E, Currie JB, Weber MH, Ouellet JA, Stone LS, Rosenzweig DH, Haglund L (2016) Nerve growth factor is regulated by Toll-like receptor 2 in human intervertebral discs. J Biol Chem 291(7):3541–3551

    Article  CAS  PubMed  Google Scholar 

  76. Minnone G, De Benedetti F, Bracci-Laudiero L (2017) NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci 18(5)

    Article  PubMed Central  CAS  Google Scholar 

  77. Miller RE, Block JA, Malfait AM (2018) What is new in pain modification in osteoarthritis? Rheumatology (Oxford) 57(suppl_4):iv99–iv107

    Article  CAS  Google Scholar 

  78. Baliu-Pique M, Jusek G, Holzmann B (2014) Neuroimmunological communication via CGRP promotes the development of a regulatory phenotype in TLR4-stimulated macrophages. Eur J Immunol 44(12):3708–3716

    Article  CAS  PubMed  Google Scholar 

  79. Gao W, Xiong Y, Li Q, Yang H (2017) Inhibition of Toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front Physiol 8:508

    Article  PubMed  PubMed Central  Google Scholar 

  80. Monnet E, Lapeyre G, Poelgeest EV, Jacqmin P, Graaf K, Reijers J, Moerland M, Burggraaf J, Min C (2017) Evidence of NI-0101 pharmacological activity, an anti-TLR4 antibody, in a randomized phase I dose escalation study in healthy volunteers receiving LPS. Clin Pharmacol Ther 101(2):200–208

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

REM is supported by the NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) (K01AR070328). AMM (R01AR064251 and R01AR060364) is supported by NIAMS. CRS is supported by the VA Rehabilitation Research and Development Service (RX001757), and funding from the University of Pennsylvania Perelman School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Malfait.

Ethics declarations

Conflict of interest

R. E. Miller and C.R. Scanzello have no conflicts to declare. A.M. Malfait has received research funding from Galapagos N.V. and from GSK, and consulting fees from Eli-Lilly/Pfizer, EMD Serono, and Vizuri.

Additional information

This article is a contribution to the special issue on Osteoimmunology - Guest Editor: Mary Nakamura

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, R.E., Scanzello, C.R. & Malfait, AM. An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Semin Immunopathol 41, 583–594 (2019). https://doi.org/10.1007/s00281-019-00762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-019-00762-3

Keywords

Navigation