Skip to main content
Log in

Discrimination of Human Pathogen Clostridium Species Especially of the Heterogeneous C. sporogenes and C. botulinum by MALDI-TOF Mass Spectrometry

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Clostridium species cause several local and systemic diseases. Conventional identification of these microorganisms is in part laborious, not always reliable, time consuming or does not always distinguish different species, i.e., C. botulinum and C. sporogenes. All in, there is a high interest to find out a reliable, powerful and rapid method to identify Clostridium spp. not only on genus but also on species level. The aim of the present study was to identify Clostridium spp. strains and also to find differences and metabolic groups of C. botulinum by Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). A total of 123 strains of Clostridium spp. (C. botulinum, n = 40, C. difficile, n = 11, C. tetani, n = 11, C. sordellii, n = 20, C. sporogenes, n = 18, C. innocuum, n = 10, C. perfringens, n = 13) were analyzed by MALDI-TOF MS in combination with methods of multivariate statistical analysis. MALDI-TOF MS analysis in combination with methods of multivariate statistical analysis was able to discriminate between the different tested Clostridium spp., even between species which are closely related and difficult to differentiate by traditional methods, i.e., C. sporogenes and C. botulinum. Furthermore, the method was able to separate the different metabolic groups of C. botulinum. Especially, E gene-positive C. botulinum strains are clearly distinguishable from the other species but also from those producing other toxin types. Thus, MALDI-TOF MS represents a reliable and above all quick method for identification of cultivated Clostridium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47:219–225

    Article  CAS  Google Scholar 

  2. Bano L, Drigo I, Tonon E, Pascoletti S, Puiatti C, Anniballi F, Auricchio B, Lista F, Montecucco C, Agnoletti F (2017) Identification and characterization of Clostridium botulinum group III field strains by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe 48:126–134

    Article  CAS  Google Scholar 

  3. Barba MJ, Fernández A, Oviaño M, Fernández B, Velasco D, Bou G (2014) Evaluation of MALDI-TOF mass spectrometry for identification of anaerobic bacteria. Anaerobe 30:126–128

    Article  CAS  Google Scholar 

  4. Beaucage CM, Onderdonk AB (1982) Evaluation of a prereduced anaerobically sterilized medium (PRAS II) system for identification of anaerobic microorganisms. J Clin Microbiol 16:570–572

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brazier JS, Duerden BI, Hall V, Salmon JE, Hood J, Brett MM, McLaughlin J, George RC (2002) Isolation and Identification of Clostridium spp. from infections associated with the injection of drugs: experiences of a microbiological investigation team. J Med Microbiol 51:985–989

    Article  CAS  Google Scholar 

  6. Burlage RS, Ellner PD (1985) Comparison of the PRAS II, AN-Ident, and RapID-ANA Systems for identification of anaerobic bacteria. J Med Microbiol 22:32–35

    CAS  Google Scholar 

  7. Chean R, Kotsanas D, Francis MJ, Palombo EA, Jadhav SR, Awad MM, Lyras D, Koman TM, Jenkin GA (2014) Comparing the identification of Clostridium spp. by two matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry platforms to 16S rRNA PCR sequencing as a reference standard: a detailed analysis of age of culture and sample preparation. Anaerobe 30:85–89

    Article  CAS  Google Scholar 

  8. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  CAS  Google Scholar 

  9. Collins MD, East AK (1998) Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84:5–17

    Article  CAS  Google Scholar 

  10. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 10:812–826

    Article  Google Scholar 

  11. Crobach MJT, Baktash A, Duszenko N, Kuijper EJ (2018) Diagnostic guidance for C. difficile infections. Adv Exp Med Biol 1050:27–44

    Article  Google Scholar 

  12. Dalpke AH, Hofko M, Zorn M, Zimmermann S (2013) Evaluation of the fully automated BD MAX Cdiff and Xpert C. difficile assays for direct detection of Clostridium difficile in stool specimens. J Clin Microbiol 51:1906–1908

    Article  Google Scholar 

  13. Deng J, Fu L, Wang R, Yu N, Ding X, Jiang L, Fang Y, Jiang C, Lin L, Wang Y, Che X (2014) Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogenes. J Thorac Dis 6:539–544

    PubMed  PubMed Central  Google Scholar 

  14. Elsayed S, Zhang K (2004) Human infection caused by Clostridium hathewayi. Emerg Infect Dis 10:1950–1952

    Article  Google Scholar 

  15. Friedrichs C, Rodloff AC, Chatwal GS, Schellenberger W, Eschrich K (2007) Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45:2392–2397

    Article  CAS  Google Scholar 

  16. Goldman E, Green LH (2009) The genus Clostridium. In: Goldman E, Green LH (eds) Practical handbook of microbiology, 2nd edn. Taylor and Francis group, London, pp 339–355

    Google Scholar 

  17. Grosse-Herrenthey A, Maier T, Gessler F, Schaumann R, Böhnel H, Kostrzewa M, Krüger M (2008) Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe 14:242–249

    Article  CAS  Google Scholar 

  18. Guo J, Chen H, Sun Z, Lin Y (2004) A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins 54:738–743

    Article  CAS  Google Scholar 

  19. Hall IC, O´Toole E (1935) Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child 49:390–402

    Article  Google Scholar 

  20. Hansbauer EM, Skiba M, Endermann T, Weisemann J, Stern D, Dorner MB, Finkenwirth F, Wolf J, Luginbühl W, Messelhäußer U, Bellanger L, Woudstra C, Rummel A, Fach P, Dorner BG (2016) Detection, differentiation, and identification of botulinum neurotoxin serotypes C, CD, D, and DC by highly specific immunoassays and mass spectrometry. Analyst 141:5281–5297

    Article  CAS  Google Scholar 

  21. Justesen US, Holm A, Knudsen E, Andersen LB, Jensen TG, Kemp M, Kemp M, Skov MN, Gahrn-Hansen B, Møller JK (2011) Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol 49:4314–4318

    Article  CAS  Google Scholar 

  22. Kim YJ, Kim SH, Park HJ, Park HG, Park D, Song SA, Lee HJ, Yong D, Choi JY, Kook JK, Kim HR, Shin JH (2017) Corrigendum to “MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species”. Anaerobe 47:238

    Article  Google Scholar 

  23. Krutova M, Wilcox MH, Kuijper EJ (2018) The pitfalls of laboratory diagnostics of Clostridium difficile infection. Clin Microbiol Infect 24:682–683

    Article  CAS  Google Scholar 

  24. La Scola B, Fournier PE, Raoult D (2011) Burden of emerging anaerobes in the MALDI-TOF MS and 16S rRNA gene sequencing era. Anaerobe 17:106–112

    Article  Google Scholar 

  25. Li Y, Gu B, Liu G, Xia W, Fan K, Mei Y, Huang P, Pan S (2014) MALDI-TOF MS versus VITEK 2 ANC card for identification of anaerobic bacteria. J Thorac Dis 6:517–523

    PubMed  PubMed Central  Google Scholar 

  26. Lindström M, Keto R, Markkula A, Nevas M, Hielm S, Korkeala H (2001) Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl Environ Microbiol 67:5694–5699

    Article  Google Scholar 

  27. Lindström M, Korkeala H (2006) Laboratory diagnostics of botulism. Clin Microbiol Rev 19:298–314

    Article  Google Scholar 

  28. Luo Y, Siu GK, Yeung AS, Chen JH, Ho PL, Leung KW, Tsang JL, Cheng VC, Guo L, Yang J, Ye L, Yam WC (2015) Performance of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid bacterial identification in two diagnostic centres in China. J Med Microbiol 64:18–24

    Article  CAS  Google Scholar 

  29. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954

    Article  CAS  Google Scholar 

  30. Morris JS, Coombes KR, Koomen J, Baggerly KA, Kobayashi R (2005) Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21:1764–1775

    Article  CAS  Google Scholar 

  31. Nagy E, Becker S, Kostrzewa M, Barta N, Urbán E (2012) The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol 61:1393–1400

    Article  CAS  Google Scholar 

  32. Ooijevaar RE, van Beurden YH, Terveer EM, Goorhuis A, Bauer MP, Keller JJ, Mulder CJJ, Kuijper EJ (2018) Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect 24:452–462

    Article  CAS  Google Scholar 

  33. Perry MJ, Centurioni DA, Davis SW, Hannett GE, Musser KA, Egan CT (2017) Implementing the Bruker MALDI Biotyper in the Public Health Laboratory for C. botulinum neurotoxin detection. Toxins 9:94

    Article  Google Scholar 

  34. Reil M, Erhard M, Kuijper EJ, Kist M, Zaiss H, Witte W, Gruber H, Borgmann S (2011) Recognition of Clostridium difficile PCR-ribotypes 001, 027 and 126/078 using an extended MALDI-TOF MS system. Eur J Clin Microbiol Infect Dis 30:1431–1436

    Article  CAS  Google Scholar 

  35. Rupf S, Breitung K, Schellenberger W, Merte K, Kneist S, Eschrich K (2005) Differentiation of mutans streptococci by intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Oral Microbiol Immunol 20:267–273

    Article  CAS  Google Scholar 

  36. Rüssmann H, Panthel K, Bader RC, Schmitt C, Schaumann R (2007) Evaluation of three rapid assays for detection of Clostridium difficile toxin A and toxin B in stool specimens. Eur J Clin Microbiol Infect Dis 26:115–119

    Article  Google Scholar 

  37. Sanchez Ramos L, Rodloff AC (2018) Identification of Clostridium species using the VITEK® MS. Anaerobe. https://doi.org/10.1016/j.anaerobe.2018.01.007

    Article  PubMed  Google Scholar 

  38. Schaumann R, Knoop N, Genzel GH, Losensky K, Rosenkranz C, Stingu CS, Schellenberger W, Rodloff AC, Eschrich K (2012) A step towards the discrimination of beta-lactamase-producing clinical isolate of Enterobacteriacae and Pseudomonas aeruginosa by MALDI-TOF mass spectrometry. Med Sci Monit 18:71–77

    Article  Google Scholar 

  39. Schroeter M, Alpers K, van Treeck U, Frank C, Rosenkoetter N, Schaumann R (2009) Outbreak of wound botulism in injecting drug users. Epidemiol Infect 137:1602–1608

    Article  CAS  Google Scholar 

  40. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  Google Scholar 

  41. Takeshi K, Fujinaga Y, Inoue K, Nakajima H, Oguma K, Ueno T, Sunagawa H, Ohyama T (1996) Simple method for detection of Clostridium botulinum type A to F neurotoxin genes by polymerase chain reaction. Microbiol Immunol 40:5–11

    Article  CAS  Google Scholar 

  42. van Veen SQ, Claas EC, Kuijper EJ (2010) High throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  Google Scholar 

  43. Vapnik VN (1995) Direct methods in statistical learning theory. In: Vapnik VN (ed) The nature of statistical learning theory, 1st edn. Springer, Berlin, pp 225–265

    Chapter  Google Scholar 

  44. Veloo AC, Erhard M, Welker M, Welling GW, Degener JE (2011) Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol 34:58–62

    Article  CAS  Google Scholar 

  45. Woudstra C, Le Maréchal C, Souillard R, Anniballi F, Auricchio B, Bano L, Bayon-Auboyer MH, Koene M, Mermoud I, Brito RB, Lobato FCF, Silva ROS, Dorner MB, Fach P (2018) Investigation of Clostridium botulinum group III’s mobilome content. Anaerobe 49:71–77

    Article  Google Scholar 

  46. Wybo I, Soetens O, De Bel A, Echahidi F, Vancutsem E, Vandoorslaer K, Piérard D (2012) Species identification of clinical Prevotella isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:1415–1418

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge gifts of strains for this study from Grosse-Herrenthey, previously Faculty of Veterinary Medicine of the University Leipzig, Leipzig, Germany and B. and M. Dorner, Robert Koch-Institute, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Dallacker-Losensky.

Ethics declarations

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaumann, R., Dallacker-Losensky, K., Rosenkranz, C. et al. Discrimination of Human Pathogen Clostridium Species Especially of the Heterogeneous C. sporogenes and C. botulinum by MALDI-TOF Mass Spectrometry. Curr Microbiol 75, 1506–1515 (2018). https://doi.org/10.1007/s00284-018-1552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1552-7

Navigation