Skip to main content
Log in

Complete Genome Sequence of Sphingobacterium psychroaquaticum Strain SJ-25, an Aerobic Bacterium Capable of Suppressing Fungal Pathogens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Using antagonistic bacterium is an effective method to control plant disease by fungal pathogens. An aerobic bacterium designated SJ-25, capable of suppressing Fusarium graminearum, Exserohilum turcicum, Pythium aphanidermatum, and Cochliobolus sativus, was isolated from farmland soil. The phylogenetic analysis revealed that strain SJ-25 belongs to the species of Sphingobacterium psychroaquaticum. The genome of strain SJ-25 consists of a 4,396,535-bp chromosome with a G+C content of 41.7 mol%; including 3696 CDS, 64 tRNA genes and six rRNA operons. Genomic analysis revealed that its genome contains multiple genes responsible for biosynthesis of siderophore, methyl 4-hydroxybenzoate, chitinase, giving strain SJ-25 the antagonistic ability on fungi pathogen. Strain SJ-25 harbors sets genes responsible for production of 2, 3-butanediol and salicylic acid, which could elicit the induced systemic resistance of the host plant. This genome sequence could be used as a basis material for further exploration of antagonistic mechanisms on fungi, widening our understanding of the ecological role of the genus Sphingobacterium in farmland ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muller R, Shinn C, Waldvogel AM, Oehlmann J, Ribeiro R, Moreira-Santos M (2019) Long-term effects of the fungicide pyrimethanil on aquatic primary producers in macrophyte-dominated outdoor mesocosms in two European ecoregions. Sci Total Environ 665:982–994

    Article  Google Scholar 

  2. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  3. Han GZ (2019) Origin and evolution of the plant immune system. New Phytol 222:70–83

    Article  Google Scholar 

  4. Ma J-P, Wang Z, Lu P, Wang H-J, Ali SW, Li S-P, Huang X (2010) Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 296:203–209

    Article  Google Scholar 

  5. Ito S, Yazawa S, Nakagawa Y, Sasaki Y, Yajima S (2015) Effects of alkyl parabens on plant pathogenic fungi. Bioorg Med Chem Lett 25:1774–1777

    Article  CAS  Google Scholar 

  6. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Product Rep 27:637–657

    Article  CAS  Google Scholar 

  7. Arrebola E, Tienda S, Vida C, de Vicente A, Cazorla FM (2019) Fitness features involved in the biocontrol interaction of pseudomonas chlororaphis with host plants: the case study of PcPCL1606. Front Microbiol 10:719

    Article  Google Scholar 

  8. Sarwar A, Latif Z, Zhang S, Hao J, Bechthold A (2019) A potential biocontrol agent Streptomyces violaceusniger AC12AB for managing potato common scab. Front Microbiol 10:202

    Article  Google Scholar 

  9. Yin CP, Jin LP, Li S, Xu X, Zhang YL (2019) Diversity and antagonistic potential of Actinobacteria from the fungus-growing termite Odontotermes formosanus. 3 Biotech 9:45

    Article  Google Scholar 

  10. Li YG, Wang RT, Liu JX, Xu LK, Ji PS, Sun L, Pan HY, Jiang BW, Li LR (2019) Identification of a biocontrol agent Bacillus vallismortis BV23 and assessment of effects of its metabolites on Fusarium graminearum causing corn stalk rot. Biocontrol Sci Technol 29:263–275

    Article  Google Scholar 

  11. Sun JQ, Liu M, Wang XY, Xu L, Wu XL (2015) Sphingobacterium suaedae sp. nov., isolated from the rhizosphere soil of Suaeda corniculata. Int J Syst Evol Microbiol 65:4508–4513

    Article  CAS  Google Scholar 

  12. Xu L, Sun J-Q, Wang L-J, Gao Z-W, Sun L-Z, Wu X-L (2017) Sphingobacterium alkalisoli sp. nov, isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 67:1943–1948

    Article  CAS  Google Scholar 

  13. Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N, Hayat R, Chang YH (2014) Sphingobacterium pakistanensis sp. nov, a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie Van Leeuwenhoek 105:325–333

    Article  Google Scholar 

  14. Mehnaz S, Weselowski B, Lazarovits G (2007) Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 30:519–524

    Article  CAS  Google Scholar 

  15. Matsuda Y, Iida Y, Shinogi T, Kakutani K, Nonomura T, Toyoda H (2001) In vitro suppression of mycelial growth of Fusarium oxysporum by extracellular chitosanase of Sphingobacterium multivorum and cloning of the chitosanase gene csnSM1. J Gen Plant Pathol 67:318–324

    Article  CAS  Google Scholar 

  16. Smibert RM, Krieg NR (1994) Phenotypic characterization. In Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  17. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  18. Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing

    Google Scholar 

  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  20. Sun JQ, Wang XY, Wang LJ, Xu L, Liu M, Wu XL (2016) Saccharibacillus deserti sp. nov, isolated from desert soil. Int J Syst Evol Microbiol 66:623–627

    Article  CAS  Google Scholar 

  21. Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  Google Scholar 

  22. Zhou Y, Liang Y, Lynch K, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucl Acids Res 39:347–352

    Article  Google Scholar 

  23. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    Article  CAS  Google Scholar 

  24. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 25:e11147

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was supported by High-Level Talent Start-Up Research Project of Inner Mongolia University (Nos. 21800–5185133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Quan Sun.

Ethics declarations

Conflict of interest

The authors have declared there was no conflict of interest.

Ethical Approval

This article doesn’t contain any study with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhang, H., Xing, YT. et al. Complete Genome Sequence of Sphingobacterium psychroaquaticum Strain SJ-25, an Aerobic Bacterium Capable of Suppressing Fungal Pathogens. Curr Microbiol 77, 115–122 (2020). https://doi.org/10.1007/s00284-019-01789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01789-3

Navigation