Skip to main content

Advertisement

Log in

Identification of Eltrombopag as a Repurposing Drug Against Staphylococcus epidermidis and its Biofilms

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus epidermidis is a common cause of nosocomial infections, and readily adheres to medical apparatus to form biofilms consisting of highly resistant persister cells. Owing to the refractory infections caused by S. epidermidis biofilms and persisters in immunosuppressed patients, it is crucial to develop new antimicrobials. In the present study, we analyzed the antimicrobial effects of the thrombopoietin receptor agonist eltrombopag (EP) against S. epidermidis planktonic cells, biofilms, and persister cells. EP was significantly toxic to S. epidermidis with the minimal inhibitory concentration of 8 μg/ml, and effectively inhibited the biofilms and persisters in a strain-dependent manner. In addition, EP was only mildly toxic to mammalian cells after 12 to 24 h treatment. It also partially synergized with vancomycin against S. epidermidis, which enhanced its antimicrobial effects and reduced its toxicity to mammalian cells. Taken together, EP is a potential antibiotic for treating refractory infections caused by S. epidermidis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kleinschmidt S, Huygens F, Faoagali J et al (2015) Staphylococcus epidermidis as a cause of bacteremia. Future Microb 10:1859–1879. https://doi.org/10.2217/fmb.15.98

    Article  CAS  Google Scholar 

  2. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155. https://doi.org/10.3389/fmicb.2018.00359

    Article  CAS  PubMed  Google Scholar 

  3. Iwase T, Uehara Y, Shinji H et al (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349. https://doi.org/10.1038/nature09074

    Article  CAS  PubMed  Google Scholar 

  4. Büttner H, Mack D, Rohde H et al (2015) Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 5:14. https://doi.org/10.3389/fcimb.2015.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65. https://doi.org/10.4248/IJOS11026

    Article  PubMed  PubMed Central  Google Scholar 

  6. Waters EM, Rowe SE, O’Gara JP et al (2016) Convergence of Staphylococcus aureus persister and biofilm research: can biofilms be defined as communities of adherent persister cells? PLoS Pathog 12:e1006012. https://doi.org/10.1371/journal.ppat.1006012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Konreddy AK, Rani GU, Lee K et al (2019) Recent drug-repurposing-driven advances in the discovery of novel antibiotics. Curr Med Chem 26:5363–5388. https://doi.org/10.2174/0929867325666180706101404

    Article  CAS  PubMed  Google Scholar 

  8. Kim W, Zou G, Hari TPA et al (2019) A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. PNAS 116:16529–16534. https://doi.org/10.1073/pnas.1904700116

    Article  CAS  PubMed  Google Scholar 

  9. She P, Liu Y, Wang Y et al (2020) Antibiofilm efficacy of the gold compound auranofin on dual species biofilms of Staphylococcus aureus and Candida sp. J Appl Microb 128:88–101. https://doi.org/10.1111/jam.14443

    Article  CAS  Google Scholar 

  10. Stokes JM, Yang K, Swanson K et al (2020) A deep learning approach to antibiotic discovery. Cell 180:688–702. https://doi.org/10.1016/j.cell.2020.01.021

    Article  CAS  PubMed  Google Scholar 

  11. Gill H, Wong RSM, Kwong YL (2017) From chronic immune thrombocytopenia to severe aplastic anemia: recent insights into the evolution of eltrombopag. Ther Adv Hematol 8:159–174. https://doi.org/10.1177/2040620717693573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu H, Zhang X, Han T, Mo X et al (2019) Eltrombopag is an effective and safe therapy for refractory thrombocytopenia after haploidentical hematopoietic stem cell transplantation. Bone Marrow Transplant 54:1310–1318. https://doi.org/10.1038/s41409-019-0435-2

    Article  CAS  PubMed  Google Scholar 

  13. Vogel JU, Schmidt S, Schmidt D et al (2019) The thrombopoietin receptor agonist eltrombopag inhibits human cytomegalovirus replication via iron chelation. Cells 9:31. https://doi.org/10.3390/cells9010031

    Article  CAS  PubMed Central  Google Scholar 

  14. Paradkar PN, De Domenico I, Durchfort N et al (2008) Iron depletion limits intracellular bacterial growth in macrophages. Blood 112:866–874. https://doi.org/10.1182/blood-2007-12-126854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee JYH, Monk IR, Gonçalves da Silva A et al (2018) Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat Microbiol 3:1175–1185. https://doi.org/10.1038/s41564-018-0230-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clinical and Laboratory Standards Institute [CLSI] (2019) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  17. Knaack D, Idelevich EA, Schleimer N et al (2019) Bactericidal activity of bacteriophage endolysin HY-133 against Staphylococcus aureus in comparison to other antibiotics as determined by minimum bactericidal concentrations and time–kill analysis. Comparative Study 93:362–368. https://doi.org/10.1016/j.diagmicrobio.2018.11.005

    Article  CAS  Google Scholar 

  18. She P, Zhou L, Li S et al (2019) Synergistic microbicidal effect of auranofin and antibiotics against planktonic and biofilm-encased S. aureus and E. faecalis. Front Microb 10:2453. https://doi.org/10.3389/fmicb.2019.02453

    Article  Google Scholar 

  19. Turk Dagi H, Kus H, Arslan U, Tuncer I (2014) In vitro synergistic activity of sulbactam in combination with imipenem, meropenem and cefoperazone against carbapenem-resistant Acinetobacter baumannii isolates. Mikrobiyol Bul 48(2):311–315. https://doi.org/10.5578/mb.7104

    Article  Google Scholar 

  20. Defraine V, Fauvart M, Michiels J (2018) Fighting bacterial persistence: current and emerging anti-persister strategies and therapeutics. Drug Resist Update 38:12–26. https://doi.org/10.1016/j.drup.2018.03.002

    Article  Google Scholar 

  21. Erickson-Miller CL, Kirchner J, Aivado M et al (2010) A reduced proliferation of non-megakaryocytic acute myelogenous leukemia and other leukemia and lymphoma cell lines in response to eltrombopag. Leuk Res 34:1224–1231. https://doi.org/10.1016/j.leukres.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  22. Kurokawa T, Murata S, Zheng YW et al (2015) The Eltrombopag antitumor effect on hepatocellular carcinoma. Inter J Oncol 47:1696–1702. https://doi.org/10.3892/ijo.2015.3180

    Article  CAS  Google Scholar 

  23. Yuan S, Chan JF, Ye ZW et al (2019) Screening of an FDA-approved drug library with a two-tier system identifies an entry inhibitor of severe fever with thrombocytopenia syndrome virus. Viruses 11:E385. https://doi.org/10.3390/v11040385

    Article  CAS  PubMed  Google Scholar 

  24. O’Gara JP (2007) Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microb Lett 270:179–188

    Article  CAS  Google Scholar 

  25. Singh R, Ray P (2014) Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microb 9:669–681. https://doi.org/10.2217/fmb.14.31

    Article  CAS  Google Scholar 

  26. Stewart EJ, Satorius AE, Younger JG et al (2013) Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure. Langmuir 29:7017–7024. https://doi.org/10.1021/la401322k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zharkova MS, Orlov DS, Golubeva OY et al (2019) Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Front Cell Infect Microbiol 9:128. https://doi.org/10.3389/fcimb.2019.00128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright GD (2016) Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 24:862–871. https://doi.org/10.1016/j.tim.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  29. Farhadi F, Khameneh B, Iranshahi M et al (2019) Antibacterial activity of flavonoids and their structure–activity relationship: an update review. Phytother Res 33:13–40. https://doi.org/10.1002/ptr.6208

    Article  CAS  PubMed  Google Scholar 

  30. Vázquez-Laslop N, Mankin AS (2018) How macrolide antibiotics work. Trends Biochem Sci 43:668–684. https://doi.org/10.1016/j.tibs.2018.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moulis G, Bagheri H, Sailler L et al (2014) Are adverse drug reaction patterns different between romiplostim and eltrombopag? 2009–2013 French PharmacoVigilance assessment. Euro J Inter Med 25:777–780. https://doi.org/10.1016/j.ejim.2014.09.006

    Article  CAS  Google Scholar 

  32. Hwang YY, Gill H, Chan TSY et al (2018) Eltrombopag in the management of aplastic anaemia: real-world experience in a non-trial setting. Hematology 23:399–404

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by the Natural Science Foundation of Hunan Province (2020JJ5877) and the Scientific Research Project of Hunan Health Committee (20201453).

Author information

Authors and Affiliations

Authors

Contributions

Z.J. and S.P. preformed experiments. S.P. and W.Y. conceived, and designed experiments and contributed to the writing of the manuscript; F.J and P.C. performed experiments and software. S.P. and W.Y. edited final version of manuscript. Z.J. and W.Y. offered fund and administrated experiments.

Corresponding authors

Correspondence to Pengfei She or Yong Wu.

Ethics declarations

Conflict of interest

None declared.

Ethical Approval

None required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., She, P., Fu, J. et al. Identification of Eltrombopag as a Repurposing Drug Against Staphylococcus epidermidis and its Biofilms. Curr Microbiol 78, 1159–1167 (2021). https://doi.org/10.1007/s00284-021-02386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02386-z

Navigation