Skip to main content
Log in

An interacting particle system modelling aggregation behavior: from individuals to populations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

In this paper we investigate the stochastic modelling of a spatially structured biological population subject to social interaction. The biological motivation comes from the analysis of field experiments on a species of ants which exhibits a clear tendency to aggregate, still avoiding overcrowding. The model we propose here provides an explanation of this experimental behavior in terms of “long-ranged” aggregation and “short-ranged” repulsion mechanisms among individuals, in addition to an individual random dispersal described by a Brownian motion. Further, based on a “law of large numbers”, we discuss the convergence, for large N, of a system of stochastic differential equations describing the evolution of N individuals (Lagrangian approach) to a deterministic integro-differential equation describing the evolution of the mean-field spatial density of the population (Eulerian approach).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P.: Convergence of Probability Measures, (Wiley series in probability and mathematical statistics. Tracts on probability and statistics). New York: John Wiley & Sons, 1968

  2. Boi, S., Capasso V.: Il comportamento aggregativo della specie Polyergus rufuscenslatr.: dalle osservazioni al modello matematico, Internal Report, Dipartimento di Matematica, Università di Milano, 1997

  3. Boi, S., Capasso, V., Morale, D.: Modeling the aggregative behavior of ants of the species. Polyergus rufescens, Nonlinear Analysis: Real World Applications, I, 2000, pp. 163–176

  4. Carillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Rat. Mech. Anal. 147, 269–361 (1999)

    Article  Google Scholar 

  5. Diekmann, O., Gyllenberg, M., Thieme, H.R.: Lack of uniqueness in transport equations with a nonlocal nonlinearity. Math. Models Meth. Appl. Sci. 10, 581–592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Durrett, R., Levin, S.A.: The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994)

    Article  MATH  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. AMS, Providence, 1998

  8. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York, London, Sidney, Toronto, 1986

  9. Forel, A.: Les Fourmis de la Suisse. 2nd edition Imprimerie Coopèrative, La Chaux-de-Fonds, 1920

  10. Forel, A.: Le monde social des fourmis du globe. 5 Libraire Kundig, Geneve, 1923

  11. Friedman, A.: Stochastic Differential Equations and Application. Vols. I and II, Academic Press, London, 1975

  12. Gärtner, J.: On the McKean-Vlasov limit for interacting particles. Math. Nachr. 139, 197–248 (1988)

    MathSciNet  Google Scholar 

  13. Grünbaum, D.: Translating stochastic density-dependent individual behaviour with sensory constraints to an Eulerian model of animal swarming. J. Math. Biology 33, 139–161 (1994)

    Google Scholar 

  14. Grünbaum, D., Okubo, A.: Modelling social animal aggregations. In: Frontiers of Theoretical Biology, S. Levin, (ed.), Lectures Notes in Biomathematics, 100, Springer Verlag, New York, 1994, pp. 296–325

  15. Gueron, S., Levin, S.A.: The dynamics of group formation. 128, 243–264 (1995)

  16. Gueron, S., Levin, S.A., Rubenstein, D.I.: The dynamics of herds: from individuals to aggregations. J. Theor. Biol. 182, 85–98 (1996)

    Article  Google Scholar 

  17. Harman, J.R.: Some aspects of the ecology of the slave making ant, Polyergus lucidus. Entomol. News 79, 217–223 (1968)

    Google Scholar 

  18. Huth, A., Wissel, C.: The movement of fish schools: a simulation model. In: Biological motion, W. Alt, G. Hoffman, (eds.), Lectures Notes Biomath., Vol. 89, Berlin, Heidelberg, New York Springer, 1990, pp. 577–590

  19. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva N.N.: Linear and Quasilinear Equations of Parabolic Type. Translation of Mathematical Monographs, Volume 23, AMS, Providence, 1968

  20. Levin, S.A.: Conceptual and methodological isuues in the modeling of biological aggregation. In: A Consensus of Individuals: The study of 3D Animal Aggregation, J.K. Parrish, W.M. Hamner, C.T. Prewitt, (eds), 1995

  21. Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Bio. 38(6), 534–549 (1999)

    Article  MATH  Google Scholar 

  22. Morale, D., Capasso, V., Oelschläger, K.: A rigorous derivation of a nonlinear integro-differential equation from a SDE for an aggregation model. Preprint 98-38 (SFB 359) - Reaktive Strömungen, Diffusion und Transport, IWR, Universität Heidelberg, Juni 1998

  23. Morale, D.: Cellular automata and many-particles systems modeling aggregation behaviour among populations, Int. J. Appl. Math. and Comp. Sci., 10(1), 157–173 (2000)

    Google Scholar 

  24. Murray, J.: Mathematical Biology. Springer-Verlag, Berlin, Heidelberg, 1989

  25. Nagai, T., Mimura, M.: Some nonlinear degenerate diffusion equations related to population dynamics. J. Math. Soc. Japan 35, 539–561 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Nagai, T., Mimura, M.: Asymptotic behaviour for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math. 43, 449–464 (1983)

    MathSciNet  MATH  Google Scholar 

  27. Oelschläger, K.: On the derivation of reaction-diffusion equations as lilit dynamics of systems of moderately interacting stochastic processes. Prob. Th. Rel. Fields 82, 565–586 (1989)

    MathSciNet  Google Scholar 

  28. Oelschläger, K.: Large systems of interacting particles and porous medium equation. J. Diff. Eqs. 88, 294–346 (1990)

    Google Scholar 

  29. Okubo, A.: Dynamical aspects of animal grouping: swarms, school, flocks and herds. Adv. BioPhys. 22, 1–94 (1986)

    Article  Google Scholar 

  30. Okubo, A., Levin, S.: Diffusion and ecological problems: Modern Perspectives. Springer-Verlag, 2002

  31. Satsuma, J.: Animal aggregation and solitons: exact solutions for nonlinear diffusion equations. In Special Issue Solitons, Mathematical Sciences, 1985, pp. 108–113 (in Japanese)

  32. Showalter, R.E.: Monotone Operators and Nonlinear Partial Differential Equations in Banach Space. AMS Mathematical Surveys and Monographs, Providence, Rhode Island, 1997

  33. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. J. Theor. Biol. 150, 473–488 (1991)

    Google Scholar 

  34. Wassman, E.: Die Ameisen, die Termiten ind ihre Gaste. Regensburg Verl.- Anstat Vorm. G.I. Manz Ag, 1934

Download references

Acknowledgments.

It is a great pleasure to acknowledge fruitful discussions with Akira Okubo who inspired this research. Thanks are also due to Simon Levin, Andrea Di Liddo and Silvia Boi for relevant discussions. During the revision process we have noticed the publication of a relevant paper [21], that might be of interest to the reader.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morale, D., Capasso, V. & Oelschläger, K. An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol. 50, 49–66 (2005). https://doi.org/10.1007/s00285-004-0279-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0279-1

Keywords

Navigation