Skip to main content
Log in

Competing populations on fragmented landscapes with spatially structured heterogeneities: improved landscape generation and mixed dispersal strategies

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Interactions between two species competing for space were studied using stochastic spatially explicit lattice-based simulations as well as pair approximations. The two species differed only in their dispersal strategies, which were characterized by the proportion of reproductive effort allocated to long-distance (far) dispersal versus short-distance (near) dispersal to adjacent sites. All population dynamics took place on landscapes with spatially clustered distributions of suitable habitat, described by two parameters specifying the amount and the local spatial autocorrelation of suitable habitat. Whereas previous results indicated that coexistence between pure near and far dispersers was very rare, taking place over only a very small region of the landscape parameter space, when mixed strategies are allowed, multiple strategies can coexist over a much wider variety of landscapes. On such spatially structured landscapes, the populations can partition the habitat according to local conditions, with one species using pure near dispersal to exploit large contiguous patches of suitable habitat, and another species using mixed dispersal to colonize isolated smaller patches (via far dispersal) and then rapidly exploit those patches (via near dispersal). An improved mean-field approximation which incorporates the spatially clustered habitat distribution is developed for modeling a single species on these landscapes, along with an improved Monte Carlo algorithm for generating spatially clustered habitat distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boots M., Sasaki A. (1999) ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. Lond. B 266, 1933–1938

    Article  Google Scholar 

  2. Bullock J.M., Moy I.L., Pywell R.F., Coulson S.J., Nolan A.M., Caswell H. (2002) Plant dispersal and colonization processes at local and landscape scales. In: James M., Bullock Kenward R.E., Hails R.S. (eds) Dispersal Ecology, chap. 14. Blackwell, Oxford, pp. 279–302

    Google Scholar 

  3. Caswell H., Etter R.J. (1993) Ecological interactions in patchy environments: From patch occupancy models to cellular automata. In: Levin S.A., Powell T.M., Steele J.H. (eds) Patch Dynamics. Springer, Berlin Heidelberg New York, pp. 93–109

    Google Scholar 

  4. Chave J., Wiegand K., Levin S. (2002) Spatial and biological aspects of reserve design. Environ. Model. Assess. 7(2): 115–122

    Article  Google Scholar 

  5. Clobert J., Danchin E., Dhondt A.A., Nichols J.D. (eds) (2001) Dispersal. Oxford University Press, New York

    Google Scholar 

  6. Coomes D.A., Rees M., Turnbull L., Ratcliffe S. (2002) On the mechanisms of coexistence among annual-plant species, using neighbourhood techniques and simulation models. Plant Ecol. 163, 23–38

    Article  Google Scholar 

  7. Filipe J.A.N., Gibson G.J. (2001) Comparing approximations to spatio-temporal models for epidemics with local spread. Bull. Math. Biol. 63, 603–624

    Article  Google Scholar 

  8. Geritz S.A.H. (1995) Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. Am. Nat. 146(5): 685–707

    Article  Google Scholar 

  9. Gutowitz H.A., Victor J.D. (1987) Local structure theory in more than one dimension. Complex Syst. 1, 57–68

    MATH  MathSciNet  Google Scholar 

  10. Harada Y. (1999) Short- versus long-range disperser: the evolutionarily stable allocation in a lattice-structured habitat. J. Theor. Biol. 201, 171–187

    Article  Google Scholar 

  11. Harada Y., Iwasa Y. (1994) Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. 36(2): 237–249

    Article  Google Scholar 

  12. Harper J.L., Lovell P.H., Moore K.G. (1970) The shapes and sizes of seeds. Annu. Rev. Ecol. Syst. 1, 327–356

    Article  Google Scholar 

  13. Hiebeler D. (1997) Stochastic spatial models: from simulations to mean field and local structure approximations. J. Theor. Biol. 187, 307–319

    Article  Google Scholar 

  14. Hiebeler D. (2000) Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal. Ecology 81(6): 1629–1641

    Article  Google Scholar 

  15. Hiebeler D. (2004) Competition between near and far dispersers in spatially structured habitats. Theor. Popul. Biol. 66(3): 205–218

    Article  Google Scholar 

  16. Hiebeler D. (2005) A cellular automaton SIS epidemiological model with spatially clustered recoveries. Lect. Notes Comput. Sci. 3515, 360–367

    Article  Google Scholar 

  17. Hiebeler D. (2005) Spatially correlated disturbances in a locally dispersing population model. J. Theor. Biol. 232(1): 143–149

    Article  MathSciNet  Google Scholar 

  18. Hiebeler D. (2006) Dynamics and resistance to neighborhood perturbations of discrete- and continuous-time cellular automata. J Cell. Automata 1(2): 125–139

    MathSciNet  MATH  Google Scholar 

  19. Hiebeler D. (2006) Moment equations and dynamics of a household SIS epidemiological model. Bull. Math. Biol. 68(6): 1315–1333

    Article  MathSciNet  Google Scholar 

  20. Lavorel S., O’Neill RV., Gardner R.H. (1994) Spatio-temporal dispersal strategies and annual plant species coexistence in a structured landscape. Oikos 71, 75–88

    Article  Google Scholar 

  21. Levin S.A. (1974) Dispersion and population interactions. Am. Nat. 108(960): 207–228

    Article  Google Scholar 

  22. Moilanen A., Hanski I. (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79(7): 2503–2515

    Article  Google Scholar 

  23. Murrell D.J., Dieckmann U., Law R. (2004) On moment closures for population dynamics in continuous space. J. Theor. Biol. 229, 421–432

    Article  Google Scholar 

  24. Nee S., May R. (1992) Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Anim Ecol. 61, 37–40

    Article  Google Scholar 

  25. Oborny B., dám Kun Á., Czárán T., Bokros S. (2000) The effect of clonal integration on plant competition for mosaic habitat space. Ecology 81(12): 3291–3304

    Article  Google Scholar 

  26. Peacock M.M., Smith A.T. (1997) The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia 112, 524–533

    Article  Google Scholar 

  27. Primack R.B., Miao S.L. (1992) Dispersal can limit local plant distribution. Conserv. Biol. 6(4): 513–519

    Article  Google Scholar 

  28. Rees M., Grubb P.J., Kelly D. (1996) Quantifying the impact of competition and spatial heterogeneity on the structure and dynamics of a four-species guild of winter annuals. Am. Nat. 147(1): 1–32

    Article  Google Scholar 

  29. Ricketts T.H. (2001) The matrix matters: Effective isolation in fragmented landscapes. Am. Nat. 158(1): 87–99

    Article  Google Scholar 

  30. Robinson G.R., Holt R.D., Gaines M.S., Hamburg S.P., Johnson M.L., Fitch H.S., Martinko E.A. (1992) Diverse and contrasting effects of habitat fragmentation. Science 257, 524–526

    Article  Google Scholar 

  31. Robinson J.V., Edgemon M.A. (1988) An experimental evaluation of the effect of invasion history on community structure. Ecology 69(5): 1410–1417

    Article  Google Scholar 

  32. Ross S. (2002) Introduction to Probability Models. Academic, New York

    Google Scholar 

  33. Smith C.C., Fretwell S.D. (1974) The optimal balance between size and number of offspring. Am. Nat. 108(962): 499–506

    Article  Google Scholar 

  34. Stoll P., Prati D. (2001) Intraspecific aggregation alters competitive interactions in experimental plant communities. Ecology 82(2): 319–327

    Article  Google Scholar 

  35. Thompson K., Rickard L.C., Hodkinson D.J. (2002) Seed dispersal: The search for trade-offs. In: Bullock J.M., Kenward R.E., Hails R.S. (eds) Dispersal ecology, chap. 8. Blackwell, Oxford, pp. 152–172

    Google Scholar 

  36. Thomson N.A., Ellner S.P. (2003) Pair-edge approximation for heterogeneous lattice population models. Theor. Popul. Biol. 64, 271–280

    Article  MATH  Google Scholar 

  37. Tilman D., Lehman C.L., Yin C. (1997) Habitat destruction, dispersal, and deterministic extinction in competitive communities. Am. Nat. 149(3): 407–435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Hiebeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiebeler, D.E. Competing populations on fragmented landscapes with spatially structured heterogeneities: improved landscape generation and mixed dispersal strategies. J. Math. Biol. 54, 337–356 (2007). https://doi.org/10.1007/s00285-006-0054-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0054-6

Keywords

Mathematics Subject Classification

Navigation