Skip to main content

Advertisement

Log in

Time optimal control of spiking neurons

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

By injecting an electrical current control stimulus into a neuron, one can change its inter-spike intervals. In this paper, we investigate the time optimal control problem for periodically firing neurons, represented by different one-dimensional phase models, and find analytical expressions for the minimum and maximum values of inter-spike intervals achievable with small bounded control stimuli. We consider two cases: with a charge-balance constraint on the input, and without it. The analytical calculations are supported with numerical results for examples of qualitatively different neuron models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashwin P, Swift J (1992) The dynamics of N weakly coupled identical oscillators. J Nonlin Sci 2: 69–108

    Article  MathSciNet  MATH  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, Rougemont JD (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406

    Article  Google Scholar 

  • Brown E, Holmes P, Moehlis J (2003) Globally coupled oscillator networks. In: Kaplan E, Marsden J, Sreenivasan K (eds) Perspectives and problems in nonlinear science: a celebratory volume in honor of Larry Sirovich. Springer, New York, pp 183–215

    Google Scholar 

  • Brown E, Moehlis J, Holmes P, Clayton E, Rajkowski J, Aston-Jones G (2004) The influence of spike rate and stimulus duration on noradrenergic neurons. J Comp Neurosci 17: 13–29

    Article  Google Scholar 

  • Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comp 16: 673–715

    Article  MATH  Google Scholar 

  • Cohen A, Holmes P, Rand R (1982) The nature of coupling between segmental oscillators of the lamprey spinal generator for locomotion: a model. J Math Biol 13: 345–369

    Article  MathSciNet  MATH  Google Scholar 

  • Danzl P, Hespanha J, Moehlis J (2009) Event-based minimum-time control of oscillatory neuron models. Biol Cybern 101: 387–399

    Article  MathSciNet  Google Scholar 

  • Danzl P, Nabi A, Moehlis J (2010) Charge-balanced spike timing control for phase models of spiking neurons. Discrete Continuous Dyn Syst Ser A 28: 1413–1435

    Article  MathSciNet  MATH  Google Scholar 

  • Ermentrout GB (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comp 8: 979–1001

    Article  Google Scholar 

  • Ermentrout GB (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Forger DB, Paydarfar D (2004) Starting, stopping, and resetting biological oscillators: in search of optimal perturbations. J Theor Biol 230: 521–532

    Article  MathSciNet  Google Scholar 

  • Gerstner W, Van Hemmen L, Cowan J (1996) What matters in neuronal locking?. Neural Comp 8: 1653–1676

    Article  Google Scholar 

  • Ghigliazza RM, Holmes P (2004) A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J Appl Dyn Syst 3(4): 671–700

    Article  MathSciNet  MATH  Google Scholar 

  • Hansel D, Mato G, Meunier C (1993) Phase dynamics for weakly coupled Hodgkin–Huxley neurons. Europhys Lett 25(5): 367–372

    Article  Google Scholar 

  • Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comp 7: 307–337

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, London

    Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical physiology. Springer, New York

    MATH  Google Scholar 

  • Kirk DE (1970) Optimal control theory: an introduction. Dover Publications, USA

    Google Scholar 

  • Kopell N, Ermentrout G (1990) Phase transitions and other phenomena in chains of coupled oscillators. SIAM J Appl Math 50: 1014–1052

    Article  MathSciNet  MATH  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, New York

    Book  MATH  Google Scholar 

  • Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Merrill D, Bikson M, Jefferys J (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2): 171–198

    Article  Google Scholar 

  • Moehlis J, Shea-Brown E, Rabitz H (2006) Optimal inputs for phase models of spiking neurons. ASME J Comp Nonlin Dyn 1: 358–367

    Article  Google Scholar 

  • Nabi A, Moehlis J (2009) Charge-balanced optimal inputs for phase models of spiking neurons. In: Proceedings of the 2009 ASME dynamic systems and control conference, Hollywood, DSCC2009-2541

  • Nabi A, Moehlis J (2010) Nonlinear hybrid control of phase models for coupled oscillators. In: Proceedings of the 2010 American control conference, Baltimore, pp 922–923

  • Pare D, Curro’Dossi R, Steriade M (1990) Neuronal basis of the Parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35: 217–226

    Article  Google Scholar 

  • Revell VL (2005) How to trick mother nature into letting you fly around or stay up all night. J Biol Rhythms 20: 353–365

    Article  Google Scholar 

  • Rinzel J, Ermentrout GB (1998) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in Neuronal Modeling. MIT Press, London, pp 251–291

    Google Scholar 

  • Rose R, Hindmarsh J (1989) The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc R Soc Lond B 237: 267–288

    Article  Google Scholar 

  • Shaik OS, Sager S, Slaby O, Lebiedz D (2008) Phase tracking and restoration of circadian rhythms by model-based optimal control. Syst Biol IET 2: 16–23

    Article  Google Scholar 

  • Tass PA (1999) Phase resetting in medicine and biology. Springer, New York

    MATH  Google Scholar 

  • Winfree A (2001) The geometry of biological time, 2nd edn. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nabi.

Additional information

This work was supported by the National Science Foundation Grant NSF-0547606 and 1000678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabi, A., Moehlis, J. Time optimal control of spiking neurons. J. Math. Biol. 64, 981–1004 (2012). https://doi.org/10.1007/s00285-011-0441-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0441-5

Keywords

Mathematics Subject Classification (2000)

Navigation