Skip to main content
Log in

Exploring the sensitivity in jellyfish locomotion under variations in scale, frequency, and duty cycle

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Jellyfish have been called one of the most energy-efficient animals in the world due to the ease in which they move through their fluid environment, by product of their bell kinematics coupled with their morphological, muscular, material properties. We investigated jellyfish locomotion by conducting in silico comparative studies and explored swimming performance across different fluid scales (i.e., Reynolds Number), bell contraction frequencies, and contraction phase kinematics (duty cycle) for a jellyfish with a fineness ratio of 1 (ratio of bell height to bell diameter). To study these relationships, an open source implementation of the immersed boundary method was used (IB2d) to solve the fully coupled fluid–structure interaction problem of a flexible jellyfish bell in a viscous fluid. Thorough 2D parameter subspace explorations illustrated optimal parameter combinations in which give rise to enhanced swimming performance. All performance metrics indicated a higher sensitivity to bell actuation frequency than fluid scale or duty cycle, via Sobol sensitivity analysis, on a higher performance parameter subspace. Moreover, Pareto-like fronts were identified in the overall performance space involving the cost of transport and forward swimming speed. Patterns emerged within these performance spaces when highlighting different parameter regions, which complemented the global sensitivity results. Lastly, an open source computational model for jellyfish locomotion is offered to the science community that can be used as a starting place for future numerical experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akanyeti O, Putney J, Yanagitsuru YR, Lauder GV, Stewart WJ, Liao JC (2017) Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry. PNAS 114(52):13828–13833

    Article  Google Scholar 

  • Alben S, Witt C, Baker TV, Anderson E, Lauder GV (2012) Dynamics of freely swimming flexible foils. Phys Fluids 24(5):051901. https://doi.org/10.1063/1.4709477

    Article  MATH  Google Scholar 

  • Alben S, Miller LA, Peng J (2013) Efficient kinematics for jet-propelled swimming. J Fluid Mech 733:100–133

    Article  MATH  Google Scholar 

  • Alexander RM (2005) Models and the scaling of energy costs for locomotion. J Exp Biol 208:1645–1652

    Article  Google Scholar 

  • Almubarak Y, Punnoose M, Maly NX, Hamidi A, Tadesse Y (2020) KryptoJelly: a jellyfish robot with confined, adjustable pre-stress, and easily replaceable shape memory alloy NiTi actuators. Smart Mater Struct 29(7):075011. https://doi.org/10.1088/1361-665x/ab859d

    Article  Google Scholar 

  • Arai MN (1997) A functional biology of Scyphozoa. Springer, Berlin

    Google Scholar 

  • Bainbridge R (1958) The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J Exp Biol 35(1):109–133

    Article  Google Scholar 

  • Bale R, Hao M, Bhalla A, Patankar NA (2014) Energy efficiency and allometry of movement of swimming and flying animals. Proc Natl Acad Sci 111(21):7517–7521

    Article  Google Scholar 

  • Battista NA (2020a) Fluid–structure interaction for the classroom: interpolation, hearts, and swimming! (accepted, in production). SIAM Rev 63(1):181–207

    Article  MATH  Google Scholar 

  • Battista NA (2020b) Swimming through parameter subspaces of a simple anguilliform swimmer. Integr Comp Biol 60(5):1221–1235. https://doi.org/10.1093/icb/icaa130

    Article  MathSciNet  Google Scholar 

  • Battista NA (2020c) Diving into a simple anguilliform swimmer’s sensitivity. Integr Comp Biol 60(5):1236–1250. https://doi.org/10.1093/icb/icaa131

    Article  MathSciNet  Google Scholar 

  • Battista NA, Mizuhara MS (2019) Fluid–structure interaction for the classroom: speed, accuracy, convergence, and jellyfish! arXiv:1902.07615

  • Battista NA, Baird AJ, Miller LA (2015) A mathematical model and MATLAB code for muscle–fluid–structure simulations. Integr Comp Biol 55(5):901–911

    Article  Google Scholar 

  • Battista NA, Strickland WC, Miller LA (2017) IB2d: a Python and MATLAB implementation of the immersed boundary method. Bioinspir Biomim 12(3):036003

    Article  Google Scholar 

  • Battista NA, Strickland WC, Barrett A, Miller LA (2018) IB2d Reloaded: a more powerful Python and MATLAB implementation of the immersed boundary method. Math Methods Appl Sci 41:8455–8480

    Article  MathSciNet  MATH  Google Scholar 

  • Bhalla A, Griffith BE, Patankar N (2013) A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming. PLoS Comput Biol 9:e1003097

    Article  MathSciNet  Google Scholar 

  • Blough T, Colin SP, Costello JH, Marques AC (2011) Ontogenetic changes in the bell morphology and kinematics and swimming behavior of rowing medusae: the special case of the Limnomedusa Liriope tetraphylla. Biol Bull 220(1):6–14

    Article  Google Scholar 

  • Bolster D, Hershberger RE, Donnelly RJ (2011) Dynamic similarity, the dimensionless science. Phys Today 64:42

    Article  Google Scholar 

  • Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: Bethel EW, Childs H, Hansen C (eds) High performance visualization-enabling extreme-scale scientific insight. Chapman and Hall/CRC, Boca Raton, pp 357–372

    Google Scholar 

  • Christianson C, Bayag C, Li G, Jadhav S, Giri A, Agba C, Li T, Tolley MT (2019) Jellyfish-inspired soft robot driven by fluid electrode dielectric organic robotic actuators. Front Robot AI 6:126. https://doi.org/10.3389/frobt.2019.00126

    Article  Google Scholar 

  • Colin SP, Costello JH (1996) Relationship between morphology and hydrodynamics during swimming by the hydromedusae Aequorea victoria and Aglantha digitale. Sci Mar 60:35–42

    Google Scholar 

  • Colin SP, Costello JH (2002) Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. J Exp Biol 205(3):427–437

    Article  Google Scholar 

  • Colin SP, Costello JH, Katija K, Seymour J, Kiefer K (2013) Propulsion in cubomedusae: mechanisms and utility. PLoS ONE 8(2):1–12. https://doi.org/10.1371/journal.pone.0056393

    Article  Google Scholar 

  • Constantine PG (2015) Active subspaces: emerging ideas for dimension reduction in parameter studies. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  • Cortez R, Minion M (2000) The blob projection method for immersed boundary problems. J Comput Phys 161:428–453

    Article  MathSciNet  MATH  Google Scholar 

  • Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127(3):265–290

    Article  Google Scholar 

  • Costello JH, Colin SP, Dabiri JO, Gemmell BJ, Lucas KN, Sutherland KR (2021) The hydrodynamics of jellyfish swimming. Ann Rev Mar Sci. https://doi.org/10.1146/annurev-marine-031120-091442

    Article  Google Scholar 

  • Dabiri JO, Gharib M (2003) Sensitivity analysis of kinematic approximations in dynamic medusan swimming models. J Exp Biol 206(20):3675–3680. https://doi.org/10.1242/jeb.00597

    Article  Google Scholar 

  • Dabiri JO, Colin SP, Costello JH, Gharib M (2005) Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J Exp Biol 208:1257–1265

    Article  Google Scholar 

  • Dabiri JO, Colin SP, Costello JH (2006) Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake. J Exp Biol 209:2025–2033

    Article  Google Scholar 

  • Dabiri JO, Colin SP, Costello JH (2007) Morphological diversity of medusan lineages constrained by animal–fluid interactions. J Exp Biol 210(11):1868–1873. https://doi.org/10.1242/jeb.003772

    Article  Google Scholar 

  • Dabiri JO, Colin SP, Katija K, Costello JH (2010) A wake-based correlate of swimming performance and foraging behavior in seven co-occurring jellyfish species. J Exp Biol 213(8):1217–1225. https://doi.org/10.1242/jeb.034660

    Article  Google Scholar 

  • Demont ME, Gosline JM (1988) Mechanics of jet propulsion in the hydromedusan jellyfish, Polyorchis pexicillatus: III. A natural resonating bell; the presence and importance of a resonant phenomenon in the locomotor structure. J Exp Biol 134(1):347–361

    Article  Google Scholar 

  • Dular J, Bajcar T, Sirok B (2009) Numerical investigation of flow in the vicinity of a swimming jellyfish. Eng Appl Comput Fluid Mech 3(2):258–270

    Google Scholar 

  • Eloy C (2013) On the best design for undulatory swimming. J Fluid Mech 717:48–89. https://doi.org/10.1017/jfm.2012.561

    Article  MathSciNet  MATH  Google Scholar 

  • Fauci L, Fogelson A (1993) Truncated newton methods and the modeling of complex immersed elastic structures. Commun Pure Appl Math 46:787–818

    Article  MathSciNet  MATH  Google Scholar 

  • Floryan D, Van Buren T, Smits AJ (2018) Efficient cruising for swimming and flying animals is dictated by fluid drag. Proc Natl Acad Sci 115(32):8116–8118. https://doi.org/10.1073/pnas.1805941115

    Article  Google Scholar 

  • Floryan D, Buren TV, Smits AJ (2020) Swimmers’ wake structures are not reliable indicators of swimming performance. Bioinspir Biomim 15(2):024001. https://doi.org/10.1088/1748-3190/ab6fb9

    Article  Google Scholar 

  • Ford M, Costello J (2000) Kinematic comparison of bell contraction by four species of hydromedusae. Sci Mar 64(S1):47–53. https://doi.org/10.3989/scimar.2000.64s147

    Article  Google Scholar 

  • Frame J, Lopez N, Curet O, Engeberg ED (2018) Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspir Biomim 13(6):064001

    Article  Google Scholar 

  • Gemmell B, Costello J, Colin SP, Stewart C, Dabiri J, Tafti D, Priya S (2013) Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. PNAS 110:17904–17909

    Article  Google Scholar 

  • Gemmell B, Costello J, Colin SP (2014) Exploring vortex enhancement and manipulation mechanisms in jellyfish that contributes to energetically efficient propulsion. Commun Integr Biol 7:e29014

    Article  Google Scholar 

  • Gemmell B, Costello J, Colin SP, Dabiri J (2015) Suction-based propulsion as a basis for efficient animal swimming. Nat Commun 6:8790

    Article  Google Scholar 

  • Gemmell BJ, Colin SP, Costello JH (2018) Widespread utilization of passive energy recapture in swimming medusae. J Exp Biol 221(1):jeb168575

    Google Scholar 

  • Gemmell BJ, Du Clos KT, Colin SP, Sutherland KR, Costello JH (2021) The most efficient metazoan swimmer creates a ‘virtual wall’ to enhance performance. Proc R Soc B 288:20202494

    Article  Google Scholar 

  • Gordon MS, Blickhan R, Dabiri JO, Videler JJ (2017) Animal locomotion: physical principles and adaptations, 1st edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Gray J (1968) Animal locomotion (world naturalist). Weidenfeld and Nicolson, London

    Google Scholar 

  • Griffith BE (2012) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Methods Biomed Eng 28(3):317–345

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith BE (2014) An adaptive and distributed-memory parallel implementation of the immersed boundary (IB) method. https://github.com/IBAMR/IBAMR. Accessed 21 Oct 2014

  • Griffith BE, Peskin CS (2005) On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. J Comput Phys 208:75–105

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith BE, Luo X (2017) Hybrid finite difference/finite element immersed boundary method. Int J Numer Methods Biomed Eng 33(12):88. https://doi.org/10.1002/cnm.2888

    Article  MathSciNet  Google Scholar 

  • Griffith BE, Hornung R, McQueen D, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223:10–49

    Article  MathSciNet  MATH  Google Scholar 

  • Hamlet C, Miller LA (2012) Feeding currents of the upside-down jellyfish in the presence of background flow. Bull Math Biol 74(11):2547–2569

    MathSciNet  MATH  Google Scholar 

  • Hamlet C, Fauci LJ, Tytell ED (2015) The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer. J Theor Biol 385:119–129

    Article  MathSciNet  MATH  Google Scholar 

  • Herschlag G, Miller LA (2011) Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. J Theor Biol 285:84–95

    Article  MathSciNet  MATH  Google Scholar 

  • Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf 52(1):1–17

    Article  Google Scholar 

  • Hoover AP, Miller LA (2015) A numerical study of the benefits of driving jellyfish bells at their natural frequency. J Theor Biol 374:13–25

    Article  MathSciNet  MATH  Google Scholar 

  • Hoover AP, Griffith BE, Miller LA (2017) Quantifying performance in the medusan mechanospace with an actively swimming three-dimensional jellyfish model. J Fluid Mech 813:1112–1155

    Article  MathSciNet  MATH  Google Scholar 

  • Hoover AP, Porras AJ, Miller LA (2019) Pump or coast: the role of resonance and passive energy recapture in medusan swimming performance. J Fluid Mech 863:1031–1061

    Article  MathSciNet  MATH  Google Scholar 

  • Jones SK, Laurenza R, Hedrick TL, Griffith BE, Miller LA (2015) Lift- vs. drag-based for vertical force production in the smallest flying insects. J Theor Biol 384:105–120

    Article  MATH  Google Scholar 

  • Joshi KB (2012) Modeling of bio-inspired jellyfish vehicle for energy efficient propulsion. Ph.D. Thesis. College of Engineering, Virginia Polytechnic Institute

  • Katija K (2015) Morphology alters fluid transport and the ability of organisms to mix oceanic waters. Int Comp Biol 55(4):698–705

    Article  Google Scholar 

  • Katija K, Jiang H (2013) Swimming by medusae Sarsia tubulosa in the viscous vortex ring limit. Limnol Oceanogr: Fluids Environ 3(1):103–118. https://doi.org/10.1215/21573689-2338313

    Article  Google Scholar 

  • Katija K, Colin SP, Costello JH, Jiang H (2015) Ontogenetic propulsive transitions by Sarsia tubulosa medusae. J Exp Biol 218:2333–2343

    Google Scholar 

  • Kim Y, Peskin CS (2006) 2D parachute simulation by the immersed boundary method. SIAM J Sci Comput 28:2294–2312

    Article  MathSciNet  MATH  Google Scholar 

  • Klotsa D (2019) As above, so below, and also in between: mesoscale active matter in fluids. Soft Matter 15:8946–8950

    Article  Google Scholar 

  • Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160:705–719

    Article  MathSciNet  MATH  Google Scholar 

  • Leftwich M, Tytell E, Cohen AH, Smits AJ (2012) Wake structures behind a swimming robotic lamprey. J Exp Biol 215:416–425

    Article  Google Scholar 

  • Link KG, Stobb MT, Di Paola J, Neeves KB, Fogelson AL, Sindi SS, Leiderman K (2018) A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS ONE 13(7):e0200917

    Article  Google Scholar 

  • Lipinski D, Mohseni K (2009) Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2436–2447

    Article  Google Scholar 

  • MATLAB: version 8.5.0 (R2015a) (2015) The MathWorks Inc., Natick, MA

  • McHenry MJ (2007) Comparative biomechanics: the jellyfish paradox resolved. Curr Biol 17(16):R632–R633

    Article  Google Scholar 

  • McHenry MJ, Jed J (2003) The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita). J Exp Biol 206(22):4125–4137. https://doi.org/10.1242/jeb.00649

    Article  Google Scholar 

  • Miles JG, Battista NA (2019) Naut your everyday jellyfish model: exploring how tentacles and oral arms impact locomotion. Fluids 4(3):169

    Article  Google Scholar 

  • Miller LA (2011) Fluid dynamics of ventricular filling in the embryonic heart. Cell Biochem Biophys 61:33–45

    Article  Google Scholar 

  • Miller LA, Peskin CS (2005) A computational fluid dynamics of clap and fling in the smallest insects. J Exp Biol 208:3076–3090

    Article  Google Scholar 

  • Mittal R, Iaccarino C (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  MATH  Google Scholar 

  • Muñoz MM (2019) The evolutionary dynamics of mechanically complex systems. Integr Comp Biol 59(3):705–715

    Article  Google Scholar 

  • Muñoz MM, Anderson PSL, Patek SN (2017) Mechanical sensitivity and the dynamics of evolutionary rate shifts in biomechanical systems. Proc R Soc B: Biol Sci 284(1847):20162325. https://doi.org/10.1098/rspb.2016.2325

    Article  Google Scholar 

  • Muñoz MM, Hu Y, Anderson PSL, Patek S (2018) Strong biomechanical relationships bias the tempo and mode of morphological evolution. eLife 7:e37621. https://doi.org/10.7554/eLife.37621

    Article  Google Scholar 

  • Neil TR, Askew GN (2018) Jet-paddling jellies: swimming performance in the Rhizostomeae jellyfish Catostylus mosaicus. J Exp Biol. https://doi.org/10.1242/jeb.191148

    Article  Google Scholar 

  • Nossent J, Elsen P, Bauwens W (2011) Sobol’ sensitivity analysis of a complex environmental model. Environ Model Soft 26(12):1515–1525

    Article  Google Scholar 

  • Pallasdies F, Goedeke S, Braun W, Memmesheimer RM (2019) From single neurons to behavior in the jellyfish Aurelia aurita. eLife 8:e50084. https://doi.org/10.7554/eLife.50084

    Article  Google Scholar 

  • Pang K, Martindale MQ (2008) Ctenophores. Curr Biol 18(24):R1120–R1119

    Article  Google Scholar 

  • Park SG, Chang CB, Huang WX, Sung HJ (2014) Simulation of swimming oblate jellyfish with a paddling-based locomotion. J Fluid Mech 748:731–755. https://doi.org/10.1017/jfm.2014.206

    Article  Google Scholar 

  • Park SG, Kim B, Lee J, Huang WX, Sung HJ (2015) Dynamics of prolate jellyfish with a jet-based locomotion. J Fluids Struct 57:331–343. https://doi.org/10.1016/j.jfluidstructs.2015.07.002

    Article  Google Scholar 

  • Peng J, Alben S (2012) Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer. Bioinspir Biomim 7(1):016012. https://doi.org/10.1088/1748-3182/7/1/016012

    Article  Google Scholar 

  • Peskin C (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  MathSciNet  MATH  Google Scholar 

  • Peskin C (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252

    Article  MathSciNet  MATH  Google Scholar 

  • Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45(1):3–11. https://doi.org/10.1119/1.10903

    Article  Google Scholar 

  • Quinn D, Lauder G, Smits A (2014) Scaling the propulsive performance of heaving flexible panels. J Fluid Mech 738:250–267

    Article  Google Scholar 

  • Ren Z, Hu W, Dong X, Sitti M (2019) Multi-functional soft-bodied jellyfish-like swimming. Nat Commun 10:2703. https://doi.org/10.1038/s41467-019-10549-7

    Article  Google Scholar 

  • Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153:509–534

    Article  MathSciNet  MATH  Google Scholar 

  • Rudolf D, Mould D (2010) An interactive fluid model of jellyfish for animation. In: Ranchordas AK, Pereira JM, Araújo HJ, Tavares JMRS (eds) Computer vision, imaging and computer graphics. Theory and applications. Springer, Berlin, pp 59–72

    Chapter  Google Scholar 

  • Russi TM (2010) Uncertainty quantification with experimental data and complex system models, pp 1–158. Ph.D. thesis. UC Berkeley

  • Sahin M, Mohseni K (2009) An arbitrary Lagrangian–Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria. J Comput Phys 228(12):4588–4605. https://doi.org/10.1016/j.jcp.2009.03.027

    Article  MathSciNet  MATH  Google Scholar 

  • Sahin M, Mohseni K, Colin SP (2009) The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212(16):2656–2667. https://doi.org/10.1242/jeb.025536

    Article  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145(2):280–297

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 18(2):259–270

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli A, Aleksankina K, Becker W, Fennell P, Ferretti F, Holst N, Li S, Wu Q (2019) Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environ Model Softw 114:29–39

    Article  Google Scholar 

  • Santhanakrishnan A, Dollinger M, Hamlet CL, Colin SP, Miller LA (2011) Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish. J Exp Biol 215:2369–2381

    Article  Google Scholar 

  • Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214:1215–1223

    Article  Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying, and running. Science 177:222–228

    Article  Google Scholar 

  • Schuech R, Hoehfurtner T, Smith DJ, Humphries S (2019) Motile curved bacteria are pareto-optimal. PNAS 116(29):14440–14447

    Article  Google Scholar 

  • Smits AJ (2019) Undulatory and oscillatory swimming. J Fluid Mech 874:P1. https://doi.org/10.1017/jfm.2019.284

    Article  MathSciNet  MATH  Google Scholar 

  • Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280

    Article  MathSciNet  MATH  Google Scholar 

  • Steinhausen MF, Steffensen JF, Andersen NG (2005) Tail beat frequency as a predictor of swimming speed and oxygen consumption of saithe (Pollachius virens) and whiting (Merlangius merlangus) during forced swimming. Mar Biol 148:197–204

    Article  Google Scholar 

  • Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  • Taylor GK, Nudds RL, Thomas AL (2003) Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425:707–711

    Article  Google Scholar 

  • Tennøe S, Halnes G, Einevoll GT (2018) Uncertainpy: a Python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience. Front Neuroinform 12:49

    Article  Google Scholar 

  • The College of New Jersey: Electronic laboratory for science & analysis (ELSA) (2020) https://docs.hpc.tcnj.edu/. Accessed 24 Jan 2020

  • Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids A 3(12):2835–2837. https://doi.org/10.1063/1.858173

    Article  Google Scholar 

  • Tytell E, Hsu C, Fauci L (2014) The role of mechanical resonance in the neural control of swimming in fishes. Zoology 117:48–56

    Article  Google Scholar 

  • Tytell ED, Leftwich MC, Hsu C, Griffith BE, Cohen AH, Smits AJ, Hamlet C, Fauci L (2016) Role of body stiffness in undulatory swimming: insights from robotic and computational models. Phys Rev Fluids 1:073202

    Article  Google Scholar 

  • Verma S, Hadjidoukas P, Wirth P, Rossinelli D, Koumoutsakos P (2017) Pareto optimal swimmers. In: Proceedings of the platform for advanced scientific computing conference, PASC ’17. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3093172.3093232

  • Videler JJ, Weihs D (1982) Energetic advantages of burst-and-coast swimming of fish at high speeds. J Exp Biol 97(1):169–178

    Article  Google Scholar 

  • Vogel S (1996) Life in moving fluids: the physical biology of flow. Princeton Paperbacks, Princeton, NJ

    Google Scholar 

  • Vogel S (2008) Modes and scaling in aquatic locomotion. Integr Comp Biol 48:702–712

    Article  Google Scholar 

  • Waldrop LD, He Y, Khatri S (2018) What can computational modeling tell us about the diversity of odor-capture structures in the Pancrustacea? J Chem Ecol 44:1084–1100

    Article  Google Scholar 

  • Waldrop LD, He Y, Battista NA, Neary T, Miller LA (2020a) Uncertainty quantification reveals the physical constraints on pumping by valveless, tubular hearts. J R Soc Interface 17:20200232

    Article  Google Scholar 

  • Waldrop LD, He Y, Hedrick TL, Rader J (2020b) Functional morphology of gliding flight I. Modeling reveals distinct performance landscapes based on soaring strategies. Integr Comp Biol 60(5):1283–1296

    Article  Google Scholar 

  • Weston J, Colin SP, Costello JH, Abbott E (2009) Changing form and function during development in rowing hydromedusae. Mar Ecol Prog Ser 374:127–134

    Article  Google Scholar 

  • Wilson MM, Eldredge JD (2011) Performance improvement through passive mechanics in jellyfish-inspired swimming. Int J Non-Linear Mech 46(4):557–567. https://doi.org/10.1016/j.ijnonlinmec.2010.12.005 (Special issue on non-linear mechanics of biological structures)

    Article  Google Scholar 

  • Wilson MM, Peng J, Dabiri JO, Eldredge JD (2009) Lagrangian coherent structures in low Reynolds number swimming. J Phys: Condens Matter 21(20):204105. https://doi.org/10.1088/0953-8984/21/20/204105

    Article  Google Scholar 

  • Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187:137–167

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Lucor D, Su CH, Karniadakis GE (2003) Performance evaluation of generalized polynomial chaos. In: Sloot PMA, Abramson D, Bogdanov AV, Gorbachev YE, Dongarra JJ, Zomaya AY (eds) International conference on computational science, Chapter 36. Springer, Berlin, pp 346–354

    Google Scholar 

  • Xu NW, Dabiri JO (2020) Low-power microelectronics embedded in live jellyfish enhance propulsion. Sci Adv. https://doi.org/10.1126/sciadv.aaz3194

    Article  Google Scholar 

  • Yuan H, Shu S, Niu X, Li M (2014) A numerical study of jet propulsion of an oblate jellyfish using a momentum exchange-based immersed boundary-lattice Boltzmann method. Adv Appl Math Mech 6(3):307–326

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang XY, Trame M, Lesko L, Schmidt S (2014) Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacomet Syst Pharmacol 4:69–79

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Laura Miller and Alexander Hoover for sharing their knowledge of jellyfish locomotion and Yoshiko Battista for introducing NAB to the world of marine life. We would also like to thank Matthew Mizuhara for his help with the sensitivity analysis and Shawn Sivy for his guidance on using TCNJ’s HPC more efficiently. We would also like to thank Christina Battista, Robert Booth, Christina Hamlet, Arvind Santhanakrishnan, Emily Slesinger, and Lindsay Waldrop for comments and discussion. J.G.M. was partially funded by the Bonner Community Scholars Program and Innovative Projects in Computational Science Program (NSF DUE #1356235) at TCNJ. Computational resources were provided by the NSF OAC #1826915 and the NSF OAC #1828163. Support for N.A.B. was provided by the TCNJ Support of Scholarly Activity Grant, the TCNJ Department of Mathematics and Statistics, and the TCNJ School of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Battista.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10525 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miles, J.G., Battista, N.A. Exploring the sensitivity in jellyfish locomotion under variations in scale, frequency, and duty cycle. J. Math. Biol. 83, 56 (2021). https://doi.org/10.1007/s00285-021-01678-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01678-z

Keywords

Mathematics Subject Classification

Navigation