Skip to main content
Log in

A study of charm hadron production in\(Z^0 \to c\bar c\) and\(Z^0 \to b\bar b\) decays at LEPdecays at LEP

  • Published:
Zeitschrift für Physik C: Particles and Fields

Abstract

Measurements of the production of the weakly decaying charmed hadrons: D0, D+, D + s andΛ + c in both\(Z^0 \to c\bar c\) and\(Z^0 \to b\bar b\) events are reported. By summing the partial contributions from each of these states we measure the partial width for Z0 decays into a\(c\bar c\) pair as:

$$\frac{{\Gamma _{c\bar c} }}{{\Gamma _{had} }} = 0.167 \pm 0.011(stat) \pm 0.011(sys) \pm 0.005(br)$$

where the errors are statistical, systematic and due to the uncertainties in the charmed hadron branching ratios, respectively. The relative production rates for the formation of the charmed hadrons from primaryc quarks is found to be in good agreement with continuum e + e data at √s≈10 GeV.

The measured rates of these four charmed hadrons inb hadron decays is found to account for

$$1.061 \pm 0.045(stat) \pm 0.060(sys) \pm 0.037(br)$$

c or\(\bar c\) quarks perb hadron decay. Comparison of the relative rates of the different charmed hadron species withϒ(4S) data indicates higher rates for D Emphasis>+ s andΛ + c hadrons and lower rates of D0 and D+ mesons as expected due to the different mixture ofb hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CLEO Collaboration, D. Bortoletto et al., Phys. Rev.D37 (1988) 1719; Erratum Phys. RevD39 (1989) 1471;

    ADS  Google Scholar 

  2. CLEO Collaboration, P. Avery et al., Phys. Rev.D43 (1991) 3599.

    ADS  Google Scholar 

  3. ARGUS Collaboration, H. Albrecht et al., Z. Phys.C52 (1991) 353.

    ADS  Google Scholar 

  4. ARGUS Collaboration, H. Albrecht et al., Phys. Lett.B207 (1988) 109.

    ADS  Google Scholar 

  5. ARGUS Collaboration, H. Albrecht et al., Phys. Lett.B210 (1988) 263;

    ADS  Google Scholar 

  6. ARGUS Collaboration, H. Albrecht et al., Z. Phys.C54 (1992) 1.

    ADS  Google Scholar 

  7. CLEO Collaboration, D. Bortoletto et al., Phys. Rev.D45 (1992) 21;

    ADS  Google Scholar 

  8. CLEO Collaboration, G. Crawford et al., Phys. Rev.D45 (1992) 752.

    ADS  Google Scholar 

  9. See for example: G. Altarelli and S. Petrarca, Phys. Lett.B261 (1991) 303;

    ADS  Google Scholar 

  10. E. Bagan, P. Ball, V.M. Braun and P. Gosdzinsky, Nucl. Phys.B432, (1994) 3;

    Article  ADS  Google Scholar 

  11. E. Bagan, P. Ball, B. Fiol and P. Gosdzinsky, Phys. Lett.B351, (1995) 546.

    ADS  Google Scholar 

  12. M. Neubert and C. T. Sachrajda, CERN-TH/96-19, (1996).

  13. T. E. Browder and K. Honscheid, Prog. in Nucl. and Part. Phys.35 (1995).

  14. OPAL Collaboration, K. Ahmet et al., Nucl. Instr. Meth.A305 (1991) 275;

    Google Scholar 

  15. P. P. Allport et al., Nucl. Instr. Meth.A324 (1993) 34;

    ADS  Google Scholar 

  16. P. P. Allport et al., Nucl. Instr. Meth.A346 (1994) 476.

    ADS  Google Scholar 

  17. M. Hauschild et al., Nucl. Instr. Meth.A314 (1992) 74.

    ADS  Google Scholar 

  18. OPAL Collaboration, G. Alexander et al., Z. Phys.C52 (1991) 175.

    ADS  Google Scholar 

  19. C. Peterson, D. Schlatter, I. Schmitt and P. M. Zerwas, Phys. Rev.D27 (1983) 105.

    ADS  Google Scholar 

  20. T. Sjöstrand, Comp. Phys. Comm.39 (1986) 347;

    Article  ADS  Google Scholar 

  21. M. Bengtsson and T. Sjöstrand, Comp. Phys. Comm.43 (1987) 367.

    Article  ADS  Google Scholar 

  22. OPAL Collaboration, G. Alexander et al., Z. Phys.C69 (1996) 543.

    Google Scholar 

  23. Particle Data Group, L. Montanet et al., Phys. Rev. Lett.D50 (1994) 1173.

    ADS  Google Scholar 

  24. The D0→Kπ+ branching ratio has been updated to correspond to the preliminary 1996 averages.

  25. ALEPH Collaboration, D. Buskulic et al., Z. Phys.C62 (1994) 1.

    ADS  Google Scholar 

  26. DELPHI Collaboration, P. Abreu et al., Phys. Lett.B345 (1995) 598;

    ADS  Google Scholar 

  27. OPAL Collaboration, R. Akers et al., Z. Phys.C66 (1995) 19;

    ADS  Google Scholar 

  28. ALEPH Collaboration, D. Buskulic et al., Z. Phys.C69 (1996) 393.

    Google Scholar 

  29. OPAL Collaboration, R. Akers et al., Z. Phys.C67 (1995) 379;

    ADS  Google Scholar 

  30. OPAL Collaboration, R. Akers et al., Phys. Lett.B350 (1995) 273;

    ADS  Google Scholar 

  31. OPAL Collaboration, R. Akers et al., Phys. Lett.B353 (1995) 402;

    ADS  Google Scholar 

  32. OPAL Collaboration, R. Akers et al., Z. Phys.C69 (1996) 195;

    Google Scholar 

  33. ALEPH Collaboration, D. Buskulic et al., Z. Phys.C69 (1996) 585;

    Google Scholar 

  34. ALEPH Collaboration, D. Buskulic et al., Phys. Lett.B357 (1995) 685;

    ADS  Google Scholar 

  35. DELPHI Collaboration, P. Abreu et al., Z. Phys.C68 (1995) 375;

    ADS  Google Scholar 

  36. DELPHI Collaboration, P. Abreu et al., CERN-PPE/95-059 (1995);

  37. DELPHI Collaboration, P. Abreu et al., Z. Phys.C68 (1995) 13;

    ADS  Google Scholar 

  38. CDF Collaboration, F. Abe et al., Phys. Rev. Lett.72 (1994) 3456;

    Article  ADS  Google Scholar 

  39. CDF Collaboration, F. Abe et al., Phys. Rev. Lett.74 (1995) 4988.

    Article  ADS  Google Scholar 

  40. OPAL Collaboration, G. Alexander et al., Phys. Lett.B364 (1995) 93.

    ADS  Google Scholar 

  41. J. Allison et al., Nucl. Instr. Meth.A317 (1992) 47.

    ADS  Google Scholar 

  42. P. Collins and T. Spiller, J. Phys.G11 (1985) 1289.

    ADS  Google Scholar 

  43. V. G. Kartvelishvili, A. K. Likhoded and V. A. Petrov, Phys. Lett.B78 (1978) 615.

    ADS  Google Scholar 

  44. B. Anderson, G. Gustafson and B. Söderberg, Z. Phys.C20 (1983) 317.

    ADS  Google Scholar 

  45. OPAL Collaboration, R. Akers et al., Z. Phys.C67 (1995) 27.

    ADS  Google Scholar 

  46. OPAL Collaboration, R. Akers et al., Phys. Lett.B353 (1995) 595.

    ADS  Google Scholar 

  47. OPAL Collaboration, M. Z. Akrawy et al., Z. Phys.C47 (1990) 505.

    ADS  Google Scholar 

  48. Calculated using the ZFITTER program assumingM Higgs =300 GeV andM top =180 GeV.

  49. D. Bardin et al., Z. Phys.C44 (1989) 493;

    Google Scholar 

  50. D. Bardin et al., Nucl. Phys.B351 (1991) 290;

    Google Scholar 

  51. D. Bardin et al., Phys. Lett.B255 (1991) 493.

    Google Scholar 

  52. The LEP Collaborations and the LEP Electroweak Working Group, CERN-PPE/95-172 (1995).

  53. OPAL Collaboration, G. Alexander et al., CERN-PPE/95-153 (1995), to appear in Z. Phys. C.

  54. J. H. Kühn, S. Nussinov and R. Rückl, Z. Phys.C5 (1980) 117.

    ADS  Google Scholar 

  55. ALEPH Collaboration, D. Buskulic et al., Phys. Lett.B244 (1990) 551;

    Google Scholar 

  56. DELPHI Collaboration, P. Abreu et al., Phys. Lett.B252 (1990) 140;

    ADS  Google Scholar 

  57. DELPHI Collaboration, P. Abreu et al., Phys. Lett.B295 (1992) 383;

    ADS  Google Scholar 

  58. DELPHI Collaboration, P. Abreu et al., Z. Phys.C59 (1993) 533.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

OPAL Collaboration., Alexander, G., Allison, J. et al. A study of charm hadron production in\(Z^0 \to c\bar c\) and\(Z^0 \to b\bar b\) decays at LEPdecays at LEP. Z. Phys. C - Particles and Fields 72, 1–16 (1996). https://doi.org/10.1007/BF02909127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02909127

Keywords

Navigation