Skip to main content
Log in

Thermoviscosifying polymer used for enhanced oil recovery: rheological behaviors and core flooding test

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer flooding represents one of the most efficient processes to enhance oil recovery, but the poor thermostability and salt tolerance of the currently used water-soluble polymers impeded their use in high temperature and salinity oil reservoirs. Thermoviscosifying polymers (TVPs) whose viscosity increases upon increasing temperature and salinity may overcome the deficiencies of most water-soluble polymers. A novel TVP was studied in comparison with traditional partially hydrolyzed polyacrylamide (HPAM) in synthetic brine regarding their rheological behaviors and core flooding experiments under simulated high temperature and salinity oil reservoir conditions (T: 85 °C, and total salinity: 32,868 mg/L, [Ca2+] + [Mg2+]: 873 mg/L). It was found that with increasing temperature, both apparent viscosity and elastic modulus of the TVP polymer solution increase, while those of the HPAM solutions decrease. Such a difference is attributed to their microstructures formed in aqueous solution, which were observed by cryogenic transmission electron microscopy. Core flow tests at equal conditions showed an oil recovery factor of 13.5 % for the TVP solution versus only 2.1 % for the HPAM solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thomas S (2008) Enhanced oil recovery: an overview. Oil Gas Sci Technol 63(1):9–19

    Article  CAS  Google Scholar 

  2. Han DK, Yan CZ, Zhang ZQ, Lou ZH, Chang YI (1999) Recent development of enhanced oil recovery in China. J Pet Sci Eng 22(3):181–188

    Article  CAS  Google Scholar 

  3. Chang HL, Zhang ZQ, Wang QM, Xu ZS, Guo ZD, Sun HQ, Cao XL, Qiao Q (2006) Advances in polymer flooding and alkaline/surfactant/polymer processes as developed and applied in the people’s republic of China. J Pet Technol 85(2):84–89

    Google Scholar 

  4. Chelaru C, Diaconu I, Simionescu I (1998) Polyacrylamide obtained by plasma-induced polymerization for a possible application in enhanced oil recovery. Polym Bull 40(6):757–764

    Article  CAS  Google Scholar 

  5. Zhong CR, Luo PY, Ye ZB, Chen H (2009) Characterization and solution properties of a novel water-soluble terpolymer for enhanced oil recovery. Polym Bull 62(1):79–89

    Article  CAS  Google Scholar 

  6. Hou J (2007) Network modeling of residual oil displacement after polymer flooding. J Pet Sci Eng 59(4):321–332

    Article  CAS  Google Scholar 

  7. Kulicke WM, Kninewske R, Klein J (1982) Preparation, characterization, solution properties and rheological behaviour of polyacrylamide. Prog Polym Sci 8(4):373–468

    Article  CAS  Google Scholar 

  8. Leung WM, Axelson DE (1987) Thermal degradation of polyacrylamide and poly(acrylamide-co-acrylate). J Polym Sci A 25(7):1852–1864

    Article  Google Scholar 

  9. Yang MH (1999) The rheological behavior of polyacrylamide solution. J Polym Eng 19(5):371–381

    Article  Google Scholar 

  10. Sabhapondit A, Borthakur A, Haque I (2003) Characterization of acrylamide polymers for enhanced oil recovery. J Appl Polym Sci 87(12):1869–1878

    Article  CAS  Google Scholar 

  11. Kheradmand H, François J, Plazanet V (1988) Hydrolysis of polyacrylamide and acrylic acid–acrylamide copolymers at neutral pH and high temperature. Polymer 29(5):860–870

    Article  CAS  Google Scholar 

  12. François J, Truong ND, Medjahdi G, Mestdagh MM (1997) Aqueous solutions of acrylamide-acrylic acid copolymers: stability in the presence of alkalinoearth cations. Polymer 38(25):6115–6127

    Article  Google Scholar 

  13. Hourdet D, L’Alloret F, Audebert R (1994) Reversible thermothickening of aqueous polymer solutions. Polymer 35(12):2624–2630

    Article  CAS  Google Scholar 

  14. L’Alloret F, Hourdet D, Audebert R (1995) Aqueous solution behavior of new thermoassociation polymers. Colloid Polym Sci 273(12):1163–1173

    Article  Google Scholar 

  15. Hourdet D, L’Alloret F, Audebert R (1997) Synthesis of thermoassociative copolymers. Polymer 38(10):2535–2547

    Article  CAS  Google Scholar 

  16. Petit L, Karakasyan C, Pantoustier N, Hourdet D (2007) Synthesis of graft polyacrylamide with responsive self-assembling properties in aqueous media. Polymer 48(24):7098–7112

    Article  CAS  Google Scholar 

  17. L’Alloret F, Maroy P, Hourdet D, Audebert R (1997) Reversible thermoassociation of water-soluble polymers. Rev Inst Fr Petrol 52(2):117–128

    Google Scholar 

  18. Wang Y, Feng YJ, Wang BQ, Lu ZY (2010) A novel thermoviscosifying water-soluble polymer: synthesis and aqueous solution properties. J Appl Polym Sci 116(15):3516–3524

    CAS  Google Scholar 

  19. Wang Y (2010) Synthesis and properties of thermoviscosifying smart water-soluble polymers. PhD Thesis, Chengdu Institute of Organic Chemistry, Chengdu

  20. Chu Z, Feng Y, Su X, Han Y (2010) Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. Langmuir 26(11):7783–7791

    Article  CAS  Google Scholar 

  21. Chu Z, Feng Y, Sun H, Li Z, Song X, Han Y, Wang H (2011) Aging mechanism of unsaturated long-chain amidosulfobetaine worm fluids at high temperature. Soft Matter 7(9):4485–4489

    Article  CAS  Google Scholar 

  22. Moradi-Araghi A, Ahmed I (1996) Water-soluble polymers (oil recovery applications). In: Salamone JC (ed) Polymeric materials encyclopedia, vol 10. CRC Press, Boca Raton, pp 8638–8655

    Google Scholar 

  23. Wever DAZ, Picchioni F, Broekhuis AA (2011) Polymers for enhanced oil recovery: a paradigm for structure–property relationship in aqueous solution. Prog Polym Sci 36(11):1558–1628

    Article  CAS  Google Scholar 

  24. Ait-Kadi A, Carreau PJ (1987) Rheological properties of partially hydrolyzed polyacrylamide solutions. J Rheol 31(7):537–561

    Article  CAS  Google Scholar 

  25. Ghannam M, Esmail N (2002) Flow behavior of enhanced oil recovery alcoflood polymers. J Appl Polym Sci 85(14):2896–2904

    Article  CAS  Google Scholar 

  26. Martel KE, Martel R, Lefebvre R, Gélinas PJ (1998) Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery. Ground Water Monit Remediat 18(2):103–113

    CAS  Google Scholar 

  27. Cochin D, Candau F (1992) Direct imaging of microstructures formed in aqueous solutions of polyamphiphiles. Macromolecules 25(16):4220–4223

    Article  CAS  Google Scholar 

  28. Feng YJ, Luo PY, Luo CQ, Yan QT (2002) Direct visualization of microstructures in hydrophobically modified polyacrylamide aqueous solution by environmental scanning electron microscopy. Polym Int 51(10):931–938

    Article  CAS  Google Scholar 

  29. Yucel T, Micklitsch CM, Schneider JP, Pochan DJ (2008) Direct observation of early-time hydrogelation in beta-hairpin peptide self-assembly. Macromolecules 41(15):5763–5772

    Article  CAS  Google Scholar 

  30. Xia H, Wang D, Wang G (2008) Effect of polymer solution viscoelasticity on residual oil. Petrol Sci Technol 26(4):398–412

    Article  CAS  Google Scholar 

  31. Zhang L (2007) Mechanism for viscoelastic polymer solution percolating through porous media. J Hydrodyn Ser B 19(2):241–248

    Article  Google Scholar 

  32. Zhang Z, Li J, Zhou J (2011) Microscopic roles of “viscoelasticity” in HPAM polymer flooding for EOR. Transp Porous Media 86(1):199–214

    Article  Google Scholar 

Download references

Acknowledgments

Y. Feng thanks the financial support from Shandong provincial government through its “Taishan Scholar” Project, and Science and Technology Department of Sichuan Province through its Distinguished Youth Fund (2010JQ0029) and Application-Oriented Fundamental Research Program (2008JY0002). Y. Wang acknowledges the sponsorship from the Chinese Academy of Sciences through its “the Light in the West” training program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Yujun Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Wang, Y., Lu, Z. et al. Thermoviscosifying polymer used for enhanced oil recovery: rheological behaviors and core flooding test. Polym. Bull. 70, 391–401 (2013). https://doi.org/10.1007/s00289-012-0798-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0798-7

Keywords

Navigation