Skip to main content
Log in

Investigation of mechanical and thermal properties of the cetyltrimethylammonium bromide functionalized molybdenum disulfide (MoS2)/epoxy composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2), a 2D layered material has been recognised as a new paradigm in the area of materials science due to its graphene like structure. Herein, we prepared functionalized MoS2 nanosheets through one-pot hydrothermal technique using cationic surfactant, cetyltrimethylammonium bromide (CTAB). The surfactant functionalized MoS2 (CTAB-MoS2) was subsequently dispersed in epoxy matrix at the loading level of 0.1–0.5 wt% to investigate the reinforcing competence of MoS2 on the mechanical and thermal properties of the composites. Fourier transform infrared spectroscopy, X-ray diffraction and field emission scanning electron microscopy (FE-SEM) were used to characterize the microstructure and morphology of the hydrothermally prepared pristine MoS2 and CTAB-MoS2. Dynamic mechanical and tensile properties were studied to comprehend the effect of functionalized MoS2 on the mechanical properties of the composites. At 0.2 wt% loading, the tensile strength and Young’s modulus was improved by ~23 and 26.7%, respectively, while ~83% improvement in storage modulus was recorded. Thermal stability of all the studied specimens were compared by selecting the temperatures at 10 and 50% weight losses which showed small decrease in onset degradation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rao CNR, Maitra U, Waghmare UV (2014) Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem Phys Lett 609:172–183

    Article  CAS  Google Scholar 

  2. Zhou K, Liu J, Wen P, Hu Y, Gui Z (2014) A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2composites. Appl Surf Sci 316:237–244

    Article  CAS  Google Scholar 

  3. Li Y, Yu Y, Huang Y, Nielsen RA, Goddard WA, Li Y, Cao L (2015) Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal 5:448–455

    Article  CAS  Google Scholar 

  4. Ma G, Peng H, Mu J, Huang H, Zhou XZ, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  CAS  Google Scholar 

  5. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  CAS  Google Scholar 

  6. Li H, Yu K, Fu H, Guo B, Lei X, Zhu Z (2015) MoS2/Graphene hybrid nano flowers with enhanced electrochemical performances as anode for lithium-ion batteries. J Phys Chem C 119:7959–7968

    Article  CAS  Google Scholar 

  7. Eksik O, Gao J, Shojaee SA, Thomas A, Chow P, Bartolucci SF, Lucca DA, Koratkar N (2014) Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives. ACS Nano 8:5282–5289

    Article  CAS  Google Scholar 

  8. Wang X, Kalali EN, Wang DY (2015) An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J Mater Chem A 3:24112–24120

    Article  CAS  Google Scholar 

  9. Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z (2012) Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide(MoS2): structural characteristics and markedly enhanced properties. RSC Adv 2:11695–11703

    Article  CAS  Google Scholar 

  10. Zhou K, Jiang S, Shi Y, Liu J, Wang B, Hu Y, Gui Z (2014) Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv 4:40170–40180

    Article  CAS  Google Scholar 

  11. Wang X, Xing W, Feng X, Yu B, Song L, Yeoh GH, Hu Y (2016) Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Compos Sci Technol 127:142–148

    Article  CAS  Google Scholar 

  12. Castellanos-Gomez A, Poot M, Steele GA, van der Zant HSJ, Agrait N, Rubio-Bollinger G (2012) Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24:772–775

    Article  CAS  Google Scholar 

  13. Zhou K, Liu J, Wang B, Zhang Q, Shi Y, Jiang S, Hu Y, Gui Z (2014) Facile preparation of poly (methylmethacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Mater Lett 126:159–161

    Article  CAS  Google Scholar 

  14. Feng X, Wen P, Cheng Y, Liua L, Tai Q, Hu Y, Meow Liew K (2016) Defect-free MoS2 nanosheets: advanced nanofillers for polymer nanocomposites. Compos A 81:61–68

    Article  CAS  Google Scholar 

  15. Huang G, Chen T, Chen W, Wang Z, Chang K, Ma L, Huang F, Chen D, Lee JY (2013) Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9:3693–3703

    Article  CAS  Google Scholar 

  16. Zhou K, Liu J, Zeng W, Hu Y, Gui Z (2015) In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos Sci Technol 107:120–128

    Article  CAS  Google Scholar 

  17. Chang K, Chen W (2011) L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728

    Article  CAS  Google Scholar 

  18. Liang KS, Chianelli RR, Chien FZ, Moss SC (1986) Structure of poorly crystalline MoS2—a modeling study. J Non Cryst Solids 79:251–273

    Article  CAS  Google Scholar 

  19. Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  CAS  Google Scholar 

  20. Wana YJ, Tang LC, Yan D, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos Sci Technol 82:60–68

    Article  Google Scholar 

  21. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46:806–817

    Article  CAS  Google Scholar 

  22. Jia J, Sun X, Lin X, Shen X, Mai YW, Kim JK (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8:5774–5783

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to the Director of CSIR-CMERI. Authors are also thankful to Department of Science and Technology, New Delhi, India for the financial supports (GAP041212) and Council of Scientific and Industrial Research, New Delhi, India for funding MEGA Institutional Project (ESC0112/RP-II).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tapas Kuila or Naresh Chandra Murmu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, S., Adak, N.C., Samanta, P. et al. Investigation of mechanical and thermal properties of the cetyltrimethylammonium bromide functionalized molybdenum disulfide (MoS2)/epoxy composites. Polym. Bull. 75, 327–343 (2018). https://doi.org/10.1007/s00289-017-2037-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2037-8

Keywords

Navigation