Skip to main content
Log in

Rheological properties and thermal stability of compatibilized polypropylene/untreated silica composites prepared by water injection extrusion process

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, polypropylene/silica (PP/SiO2) composites containing 5 wt% of untreated precipitated silica were compatibilized with different coupling agents like maleic anhydride-grafted polypropylene, glycerol monostearate (GMS), ethylene acrylic acid zinc ionomer and a second polymer phase of polyamide 6 (PA6). The composites were melt-compounded by two different processes: either by direct melt mixing or by dilution of a masterbatch (two-step mixing) in a twin screw extruder using both injected water and high shear stress as a new processing method. The various samples were characterized by Fourier transform infrared spectroscopy (FTIR), thermal analysis, morphological and rheological measurements in order to determine the compatibilizers effects between the matrix and the untreated filler. Hence, atomic force microscopy observations revealed that the untreated silica was dispersed more homogeneously in the presence of PA6 and GMS compatibilizers when water injection is used as one. However, the roughness values are lower in this case. FTIR analysis confirmed the existence of interfacial interactions between OH groups of SiO2 and polar groups of compatibilizers. The storage (G′), loss moduli (G″) and the dynamic viscosity of PP/SiO2 composites increased with the incorporation of PA6. Furthermore, the thermal stability of the compatibilized PP/SiO2 compounds enhanced significantly in the presence of water. An improvement in decomposition temperature of about 50 °C was obtained compared to uncoupled composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reynaud E, Jouen T, Gauthier C et al (2001) Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42:8759–8768

    Article  CAS  Google Scholar 

  2. Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687

    Article  CAS  Google Scholar 

  3. Raghavan SR, Khan SA (1995) Shear-induced microstructural changes in flocculated suspensions of fumed silica. J Rheol 39:1311–1325

    Article  CAS  Google Scholar 

  4. Lin OH, Md Akil H, Mohd Ishak ZA (2009) Characterization and properties of activated nanosilica/polypropylene composites with coupling agents. Polym Compos 30(11):1693–1700

    Article  CAS  Google Scholar 

  5. SinhaRay S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  6. Garcia-Lopez D, Picazo O, Merino JC et al (2003) Propylene-clay naocomposites: effect of compatibilizing agents on clay dispersion. Eur Polym J 39(5):945–950

    Article  CAS  Google Scholar 

  7. Zoukrami F, Haddaoui N, Vanzeveren C et al (2008) Effect of compatibilizer on the dispersion of untreated silica in a polypropylene matrix. Polym Int 57(5):756–763

    Article  CAS  Google Scholar 

  8. Ikeda Y, Kohjiya S (1997) In situ formed silica particles in rubber vulcanizate by the sol-gel method. Polymer 38(17):4417–4423

    Article  CAS  Google Scholar 

  9. Rong MZ, Zhang MQ, Zheng YX et al (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42:167–175

    Article  CAS  Google Scholar 

  10. Wang G, Zhang L, He G (1996) Chinese Patent (CN1046921)

  11. Bomal Y, Cochet P, Dejean B et al (1996) Une silice de nouvelle génération. l’Actualité chimique 1:42–48

    Google Scholar 

  12. Liu Y, Kontopoulou M (2006) The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica. Polymer 47:7731–7739

    Article  CAS  Google Scholar 

  13. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ et al (2008) Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J Appl Polym Sci 110:1739–1749

    Article  CAS  Google Scholar 

  14. Pham TD, Vu CM, Choi HJ et al (2017) Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica. Polym Sci Ser A 59(3):437–444

    Article  CAS  Google Scholar 

  15. Zhao Y, Chen ZK, Liu Y et al (2013) Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrile-butadiene nano-rubber. Compos A Appl Sci Manuf 55:178–187

    Article  CAS  Google Scholar 

  16. Hu YH, Chen CY, Wang CC (2004) Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stabil 84:545–553

    Article  CAS  Google Scholar 

  17. Zheng K, Chen L, Li Y et al (2004) Preparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites. Polym Eng Sci 44:1077–1082

    Article  CAS  Google Scholar 

  18. Jeziórska R, Świerz-Motysia B, Zielecka M et al (2012) Structure and mechanical properties of low-density polyethylene/spherical silica nanocomposites prepared by melt mixing: the joint action of silica’s size, functionality, and compatibilizer. J Appl Polym Sci 125:4326–4337

    Article  Google Scholar 

  19. Al-Arbash A, Ahmad Z, Al-Sagheer F et al (2006) Microstructure and thermomechanical properties of polyimide-silica nanocomposites. J Nanomater 1:1–9

    Article  Google Scholar 

  20. Chrissafisa K, Paraskevopoulosa KM, Pavlidoua E et al (2009) Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485:65–71

    Article  Google Scholar 

  21. Wu CL, Zhang MQ, Rong MZ et al (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62:1327–1340

    Article  CAS  Google Scholar 

  22. Jain S, Goossens H, Picchioni F et al (2005) Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solid-state modification and sol-gel reactions. Polymer 46:6666–6681

    Article  CAS  Google Scholar 

  23. Uotila R, Hippi U, Paavola S et al (2005) Compatibilization of PP/elastomer/microsilica composites with functionalized polyolefins: effect on microstructure and mechanical properties. Polymer 46(19):7923–7930

    Article  CAS  Google Scholar 

  24. Wu W, Wagner MH, Xu Z (2003) Surface treatment mechanism of nano-SiO2 and the properties of PP/nano-SiO2 composite materials. Colloid Polym Sci 281:550–555

    Article  CAS  Google Scholar 

  25. Bikiaris DN, Papageorgiou GZ, Pavlidou E et al (2006) Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface treated nanoparticles. J Appl Polym Sci 100:2684–2696

    Article  CAS  Google Scholar 

  26. Huang Y, Yamaguchi A, Pham TD et al (2018) Charging and aggregation behavior of silica particles in the presence of lysozymes. Colloid Polym Sci 296(1):145–155

    Article  CAS  Google Scholar 

  27. Garcia M, van Vliet G, Jain S et al (2004) Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev Adv Mater Sci 6:169–175

    CAS  Google Scholar 

  28. Kato M, Matsushita M, Fukumori K (2004) Development of a new production method for a polypropylene/clay nanocomposite. Polym Eng Sci 44(7):1205–1211

    Article  CAS  Google Scholar 

  29. Fedullo N, Sclavons M, Bailly C et al (2006) Nanocomposites from untreated clay: A myth? J Macromol Symp 233:235–245

    Article  CAS  Google Scholar 

  30. Li Z, Zhu Y (2003) Surface-modification of SiO2 nanoparticles with oleic acid. Appl Surf Sci 211(4):315–320

    Article  CAS  Google Scholar 

  31. Yan M, Yang H (2012) Improvement of polyamide 1010 with silica nanospheres via in situ melt polycondensation. Polym Compos 33:1770–1776

    Article  CAS  Google Scholar 

  32. Pham TD, Bui TT, Nguyen VT et al (2018) Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk/characteristics, mechanisms, and application for antibiotic removal. Polymers 10(220):1–17

    Google Scholar 

  33. Musić S, Filipović-Vinceković N, Sekovanić L (2011) precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 28(1):89–94

    Article  Google Scholar 

  34. Tang JC, Yang HC, Chen SY et al (2007) Preparation and properties of polyimide/silica hybrid nanocomposites. Polym Compos 28:575–581

    Article  CAS  Google Scholar 

  35. Hong RY, Fu HP, Zhang YJ et al (2007) Surface-modified silica nanoparticles for reinforcement of PMMA. JAppl Polym Sci 105(2176):2184

    Google Scholar 

  36. Qian J, Cheng G, Zhang H et al (2011) Preparation and characterization of polypropylene/silica nanocomposites by gamma irradiation via ultrafine blend. J Polym Res 18:409–417

    Article  CAS  Google Scholar 

  37. Li D, Liu Q, Yu L et al (2009) Correlation between interfacial interactions and mechanical properties of PA-6 doped with surface-capped nano-silica. Appl Surf Sci 255:7871–7877

    Article  CAS  Google Scholar 

  38. Pham TD, Do TT, Ha VL et al (2017) Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina. Environ Chem 14:327–337

    Article  CAS  Google Scholar 

  39. Maji Pradip K, Bhowmick Anil K (2013) Structure–property correlation of polyurethane nanocomposites: influence of loading and nature of nanosilica and microstructure of hyperbranched polyol. J Appl Polym Sci 127(6):4492–4504

    Article  Google Scholar 

  40. Parvinzadeh M, Moradian S, Rashidi A et al (2010) Surface characterization of polyethylene terephthalate/silica nanocomposites. Appl Surf Sci 256:2792–2802

    Article  CAS  Google Scholar 

  41. Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene–polyisoprene block copolymer based layered-silicate nanocomposites. Macrmolecules 33:3739–3746

    Article  CAS  Google Scholar 

  42. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34(4):852–858

    Article  CAS  Google Scholar 

  43. Solomon MJ, Almusallam AS, Seefeldt KF et al (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872

    Article  CAS  Google Scholar 

  44. Chow WS, Abu Bakar A, Mohd Ishak ZA et al (2005) Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological, and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites. Eur Polym J 41(4):687–696

    Article  CAS  Google Scholar 

  45. Li J, Zhou C, Wang G et al (2003) Preparation and linear rheological behavior of polypropylene/MMT nanocomposites. Polym Compos 24(3):323–331

    Article  Google Scholar 

  46. Jarnthong M, Nakason C, Lopattananon N et al (2012) influence of incorporation sequence of silica nanoparticles on morphology, crystallization behavior, mechanical properties, and thermal resistance of melt blended thermoplastic natural rubber. Polym Compos 33(11):1911–1920

    Article  CAS  Google Scholar 

  47. Srisawat N, Nithitanakul M, Srikulkit K (2009) Characterizations of fibers produced from polypropylene/silica composite. J Metals Mater Miner 19(1):53–58

    CAS  Google Scholar 

  48. Luyt AS, Dramicanin MD, Antic Z et al (2009) Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polym Test 28(3):348–356

    Article  CAS  Google Scholar 

  49. Mainil M, Urbanczyk L, Calberg C et al (2010) Morphology and properties of SAN-clay nanocomposites prepared principally by water-assisted extrusion. Polym Eng Sci 50(1):10–21

    Article  CAS  Google Scholar 

  50. Touchaleaume F, Soulestin J, Sclavons M et al (2011) One-step water-assisted melt-compounding of polyamide 6/pristine clay nanocomposites: an efficient way to prevent matrix degradation. Polym Degrad Stabil 96:1890–1900

    Article  CAS  Google Scholar 

  51. Rousseaux DJ, Idrissi NS, Baudouin AC et al (2011) Water-assisted extrusion of polypropylene/clay nanocomposites: a comprehensive study. Polymer 52:443–451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the AUF (Association des Universités Francophones) for a fellowship to FZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouzia Zoukrami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoukrami, F., Haddaoui, N., Sclavons, M. et al. Rheological properties and thermal stability of compatibilized polypropylene/untreated silica composites prepared by water injection extrusion process. Polym. Bull. 75, 5551–5566 (2018). https://doi.org/10.1007/s00289-018-2344-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2344-8

Keywords

Navigation