Skip to main content
Log in

A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The arising trend of using natural fibres in the composite materials has stimulated the continuous exploration of their mechanical properties. The positive environmental behaviours of natural fibres are the driving factor that allows them to gain their wide acceptance in industries. However, the mechanical behaviour of natural fibre-based composites is still not fully explored. In this research study, the mechanical properties of composite materials with different types of natural fibre and various fibre compositions were investigated. The polypropylene-based composite materials were fabricated through hot press compression moulding method using a hydraulic hot press machine. The composites were then subjected to mechanical tests to study the tensile, flexural and impact properties of such materials. The results demonstrated that the tensile strength and flexural strength of pineapple leaf fibre (PALF)-based composites were 7.83% and 54.23% higher than kenaf-based composites at a fibre content of 30 wt%. Moreover, the impact strength of PALF-reinforced composites was 3.08% and 5.56% higher than kenaf fibre-reinforced composites in the flatwise and edgewise impact orientations. Overall, composites with 30 wt% evidenced the top most mechanical properties irrespective of types of plant fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  2. Habibi M, Laperrière L, Hassanabadi HM (2018) Influence of low-velocity impact on residual tensile properties of nonwoven flax/epoxy composite. Compos Struct 186:175–182. https://doi.org/10.1016/j.compstruct.2017.12.024

    Article  Google Scholar 

  3. Feng NL, Malingam SD, Jenal R, Mustafa Z, Subramonian S (2018) A review of the tensile and fatigue responses of cellulosic fibre-reinforced polymer composites. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1489086

    Article  Google Scholar 

  4. Zahedi M, Khanjanzadeh H, Pirayesh H, Saadatnia MA (2015) Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flour-polypropylene bio-nanocomposites. Compos Part B Eng 71:143–151. https://doi.org/10.1016/j.compositesb.2014.11.009

    Article  CAS  Google Scholar 

  5. Subramaniam K, Malingam SD, Feng NL, Bapokutty O (2017) The effects of stacking configuration on the response of tensile and quasi-static penetration to woven kenaf/glass hybrid composite metal laminate. Polym Compos. https://doi.org/10.1002/pc.24691

    Article  Google Scholar 

  6. Martin N, Davies P, Baley C (2016) Evaluation of the potential of three non-woven flax fiber reinforcements: spunlaced, needlepunched and paper process mats. Ind Crops Prod 83:194–205. https://doi.org/10.1016/j.indcrop.2015.10.008

    Article  Google Scholar 

  7. Feng NL, Malingam SD (2019) Monotonic and fatigue responses of fiber-reinforced metal laminates. In: Jawaid M, Thariq M, Saba N (eds) Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, 1st edn. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-102292-4.00016-3

    Chapter  Google Scholar 

  8. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  9. Feng NL, DharMalingam S, Zakaria KA, Selamat MZ (2017) Investigation on the fatigue life characteristic of kenaf/glass woven-ply reinforced metal sandwich materials. J Sandw Struct Mater. https://doi.org/10.1177/1099636217729910

    Article  Google Scholar 

  10. Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mater Sci 78–79:1–92. https://doi.org/10.1016/j.pmatsci.2015.11.001

    Article  CAS  Google Scholar 

  11. Cieh NL, Sulaiman S, Mokhtar MN, Naim MN (2017) Bleached kenaf microfiber as a support matrix for cyclodextrin glucanotransferase immobilization via covalent binding by different coupling agents. Process Biochem 56:81–89. https://doi.org/10.1016/j.procbio.2017.02.025

    Article  CAS  Google Scholar 

  12. Ng LF, Sivakumar D, Zakaria KA, Bapokutty O, Sivaraos S (2017) Influence of kenaf fibre orientation effect on the mechanical properties of hybrid structure of fibre metal laminate. Pertanika J Sci Technol 25:1–8

    Google Scholar 

  13. Rashdi AAA, Sapuan SM, Ahmad MMHM, Abnan K (2009) Review of kenaf fiber reinforced polymer composites. Polimery 54:777–780

    Article  CAS  Google Scholar 

  14. Babatunde OE, Yatim JM, Ishak MY, Masoud R, Meisam R (2015) Potentials of kenaf fibre in bio-composite production: a review. J Teknol 77:23–30. https://doi.org/10.11113/jt.v77.6304

    Article  Google Scholar 

  15. Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16. https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  16. Radzi AM, Sapuan SM, Jawaid M, Mansor MR (2017) Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites. Fibers Polym 18:1353–1358. https://doi.org/10.1007/s12221-017-7311-8

    Article  CAS  Google Scholar 

  17. Salman SD, Leman Z, Sultan MTH et al (2016) Influence of fiber content on mechanical and morphological properties of woven kenaf reinforced pvb film produced using a hot press technique. Int J Polym Sci 2016:1–11. https://doi.org/10.1155/2016/7828451

    Article  CAS  Google Scholar 

  18. El-Shekeil YA, Sapuan SM, Jawaid M, Al-Shuja’a OM (2014) Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater Des 58:130–135. https://doi.org/10.1016/j.matdes.2014.01.047

    Article  CAS  Google Scholar 

  19. Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Part A Appl Sci Manuf 33:43–52. https://doi.org/10.1016/S1359-835X(01)00071-9

    Article  Google Scholar 

  20. Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607. https://doi.org/10.1016/j.compscitech.2008.01.004

    Article  CAS  Google Scholar 

  21. Sivakumar D, Ng LF, Chew RM, Bapokutty O (2017) Investigation on failure strength of bolted joints woven fabric reinforced hybrid composite. Int Rev Mech Eng 11:138–143. https://doi.org/10.15866/ireme.v11i2.10897

    Article  CAS  Google Scholar 

  22. Khanjanzadeh H, Pirayesh H, Salari A (2013) Long term hygroscopic characteristics of polypropylene based hybrid composites with and without organo-modified clay. Eur J Wood Wood Prod 71:211–218. https://doi.org/10.1007/s00107-012-0661-4

    Article  CAS  Google Scholar 

  23. Khan MZR, Srivastava SK, Gupta MK (2018) Tensile and flexural properties of natural fiber reinforced polymer composites: a review. J Reinf Plast Compos. https://doi.org/10.1177/0731684418799528

    Article  Google Scholar 

  24. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  25. Abilash N, Sivapragash M (2016) Optimizing the delamination failure in bamboo fiber reinforced polyester composite. J King Saud Univ Eng Sci 28:92–102. https://doi.org/10.1016/j.jksues.2013.09.004

    Article  Google Scholar 

  26. Ramli R, Yunus RM, Beg MDH, Prasad DMR (2011) Oil palm fiber reinforced polypropylene composites: effects of fiber loading and coupling agents on mechanical, thermal, and interfacial properties. J Compos Mater 46:1275–1284. https://doi.org/10.1177/0021998311417647

    Article  CAS  Google Scholar 

  27. Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66:538–547. https://doi.org/10.1016/j.compscitech.2005.06.014

    Article  CAS  Google Scholar 

  28. Sivakumar D, Ng LF, Selamat MZ, Sivaraos S (2017) Investigation on fatigue life behaviour of sustainable bio-based fibre metal laminate. J Mech Eng 1:123–140

    Google Scholar 

  29. Sultana Mir S, Hasan M, Hasan SMN et al (2015) Effect of chemical treatment on the properties of coir fiber reinforced polypropylene and polyethylene composites. Polym Compos 38:1259–1265. https://doi.org/10.1002/pc.23690

    Article  CAS  Google Scholar 

  30. Yallew TB, Kumar P, Singh I (2016) Mechanical behavior of nettle/wool fabric reinforced polyethylene composites. J Nat Fibers 13:610–618. https://doi.org/10.1080/15440478.2015.1093576

    Article  CAS  Google Scholar 

  31. Sangthong S, Pongprayoon T, Yanumet N (2009) Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibers. Compos Part A Appl Sci Manuf 40:687–694. https://doi.org/10.1016/j.compositesa.2008.12.004

    Article  CAS  Google Scholar 

  32. Caminero MA, Rodríguez GP, Muñoz V (2016) Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates. Compos Struct 136:345–357. https://doi.org/10.1016/j.compstruct.2015.10.019

    Article  Google Scholar 

  33. Yahaya R, Sapuan SM, Jawaid M et al (2015) Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Mater Des 67:173–179. https://doi.org/10.1016/j.matdes.2014.11.024

    Article  CAS  Google Scholar 

  34. Alomayri T, Assaedi H, Shaikh FUA, Low IM (2014) Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. J Asian Ceram Soc 2:223–230. https://doi.org/10.1016/j.jascer.2014.05.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Teknikal Malaysia Melaka for their continuous support to this research project. The authors also wish to express their gratitude towards Skim Zamalah UTeM provided by Universiti Teknikal Malaysia Melaka and Grant FRGS/1/2017/STG07/FKM-CARE/F00339 from Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Dhar Malingam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, L.F., Dhar Malingam, S., Selamat, M.Z. et al. A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres. Polym. Bull. 77, 1449–1463 (2020). https://doi.org/10.1007/s00289-019-02812-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02812-0

Keywords

Navigation