Skip to main content

Advertisement

Log in

Interpenetrating polymer network as a pioneer drug delivery system: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Interpenetrating polymer network (IPN) is an enterprising drug delivery system, comprising of two polymers with several advantages like stability, biocompatibility, high swelling capacity and biodegradability which plays an important function in targeted and controlled drug delivery. IPN acquired appreciable focus in the pharmaceutical sector mostly for the last few decades because of their utility in biomedical applications like tissue engineering and drug delivery at the target site at desired rate. For the past few years, different types of polymers obtained from natural or artificial sources have been used to prepare the IPN, resulting in improved properties; thus, IPN is considered in the category of the novel technologies demonstrating the superior performances as compared to the conventional technique. IPN development leads to the formation of dosage form with reduced side effects and prolonged drug action. The current topic includes IPN, types of IPN, mode of preparation, applications, delivery systems and list of polymers employed in the synthesis of IPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IPN:

Interpenetrating polymer network

IPNs:

Interpenetrating polymer networks

SIPN:

Semi-IPN

LBG:

Locust bean gum

CTG:

Carboxy tamarind gum

GMP:

Good manufacturing practices

IPN-NPs:

IPN nanoparticles

SCMC:

Sodium carboxymethyl cellulose

PVA:

Polyvinyl acetate

PEG:

Polyethylene glycol

HA:

Hyaluronic acid

ESR:

Electron spin resonance

NMR:

Nuclear magnetic resonance

TGA:

Thermogravimetric analysis

DSC:

Differential scanning calorimetry

References

  1. David SS (2000) Drug delivery systems. Interdiscip Sci Rev 25(3):175–183

    Google Scholar 

  2. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2(1):2

    PubMed  PubMed Central  Google Scholar 

  3. Park K (2016) Drug delivery research: the invention cycle. Mol Pharm 13(7):2143–2147

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jain N, Kumar Sharma P, Banik A, Gupta A, Bhardwaj V (2011) Pharmaceutical and biomedical applications of interpenetrating polymer network. Curr Drug Ther 6(4):263–270

    CAS  Google Scholar 

  5. Ravi Kumar MN, Kumar N (2001) Polymeric controlled drug-delivery systems: perspective issues and opportunities. Drug Dev Ind Pharm 27(1):1–30

    Google Scholar 

  6. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Ann Rev Chem Biomol Eng 1:149–173

    CAS  Google Scholar 

  7. Giusti P, Lazzeri L, Barbani N, Narducci P, Bonaretti A, Palla M, Lelli L (1993) Hydrogels of poly(vinyl alcohol) and collagen as new bioartificial materials. J Mater Sci Mater Med 4(6):538–542

    CAS  Google Scholar 

  8. Cascone MG (1997) Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int 43(1):55–69

    CAS  Google Scholar 

  9. Sperling LH (2012) Interpenetrating polymer networks and related materials. Springer, Berlin

    Google Scholar 

  10. Sperling LH (2005) Interpenetrating polymer networks in biomedical applications. In: Mark HF (ed) Encyclopedia of polymer science and technology, vol 10, 3rd edn. Wiley, New York, pp 272–311

    Google Scholar 

  11. Kim SJ, Yoon SG, Kim SI (2004) Synthesis and characteristics of interpenetrating polymer network hydrogels composed of alginate and poly(diallydimethylammonium chloride). J Appl Polym Sci 91(6):3705–3709

    CAS  Google Scholar 

  12. Banerjee S, Chaurasia G, Pal D, Ghosh AK, Ghosh A, Kaity S (2010) Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res 69:777–784

    CAS  Google Scholar 

  13. Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW (1996) Glossary of basic terms in polymer science (IUPAC recommendations 1996). Pure Appl Chem 68(12):2287–2311

    CAS  Google Scholar 

  14. Aylsworth JW (1914) U.S. Patent No. 1,111,284. U.S. Patent and Trademark Office, Washington

    Google Scholar 

  15. Klempner D, Frisch KC (1980) Polymer alloys III: blends, blocks, grafts, and interpenetrating networks/edited by Daniel Klempner and Kurt C. Frisch. American Chemical Society, Division on Organic Coatings and Plastic Chemistry, Washington

    Google Scholar 

  16. Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE (2001) In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 51(2):127–133

    CAS  PubMed  Google Scholar 

  17. Lohani A, Singh G, Bhattacharya SS, Verma A (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014:583612. https://doi.org/10.1155/2014/583612

    PubMed  PubMed Central  Google Scholar 

  18. Patel JM, Savani HD, Turakhiya JM, Akbari BV, Goyani M, Raj HA (2012) Interpenetrating polymer network (IPN): a novel approach for controlled drug delivery. Univers J Pharm 01:1–11

    Google Scholar 

  19. Itokazu M, Yamamoto K, Yang WY, Aoki T, Kato N, Watanabe K (1997) The sustained release of antibiotic from freeze-dried fibrin-antibiotic compound and efficacies in a rat model of osteomyelitis. Infection 25(6):359–363

    CAS  PubMed  Google Scholar 

  20. https://silon.com/technology

  21. Sperling LH (1997) Interpenetrating polymer networks and related materials. J Polym Sci Macromol Rev 12:141–180

    Google Scholar 

  22. Chikh L, Delhorbe V, Fichet O (2011) (Semi-)interpenetrating polymer networks as fuel cell membranes. J Membr Sci 368(1–2):1–17

    CAS  Google Scholar 

  23. Sergeeva LM, Grigoryeva OP, Zimich ON, Privalko EG, Shtompel VI, Privalko VP, Kyritsis A (1997) Structure-property relationships in thermoplastic pseudo-interpenetrating polymer networks. I. Phase morphology. J Adhes 64(1–4):161–171

    CAS  Google Scholar 

  24. Singh P, Senthil Kumar SK, Keerthi TS, Tamizh Mani T, Getyala A (2012) Interpenetrating polymer network (IPN) microparticles an advancement in novel drug delivery system: a review. Pharma Sci Monit 3(4):1826–1837

    CAS  Google Scholar 

  25. Siegfried DL, Thomas DA, Sperling LH (1984) U.S. Patent No. 4,468,499. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  26. Pater RH (1990) IPNs high performance. VCH Pub, New York, pp 377–401

    Google Scholar 

  27. Klempner D, Sperling LH, Utracki LA (1994) Interpenetrating polymer networks (No. CONF-910812-). American Chemical Society, Washington

    Google Scholar 

  28. Jain N, Banik A, Gupta BN (2013) Novel IPN microspheres of Lepidium sativum and poly(vinyl alcohol) for the controlled release of simvastatin. Int J Pharm Sci 2013(5):125–130

    Google Scholar 

  29. Hoffmann AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  30. Kosmala JD, Henthorn DB, Brannon-Peppas L (2000) Preparation of interpenetrating networks of gelatine and dextran as degradable biomaterials. Biomaterials 21(20):2019–2023

    CAS  PubMed  Google Scholar 

  31. Bhattacharya SS, Shukla S, Banerjee S, Chowdhury P, Chakraborty P, Ghosh A (2013) Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym Plast Technol Eng 52(8):795–805

    CAS  Google Scholar 

  32. Landfester K (2006) Synthesis of colloidal particles in miniemulsion. Annu Rev Mater Res 36:231–279

    CAS  Google Scholar 

  33. Koul V, Mohamed R, Kuckling D, Adler HJ, Choudhary V (2011) Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids Surf B 83(2):204–213

    CAS  Google Scholar 

  34. Elbarbary AM, Ghobashy MM (2017) Phosphorylation of chitosan/HEMA interpenetrating polymer network prepared by γ-radiation for metal ions removal from aqueous solutions. Carbohydr Polym 162:16–27

    CAS  PubMed  Google Scholar 

  35. Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym 12(3):197–220

    CAS  Google Scholar 

  36. Gekhre H, Lee PI (1990) Hydrogels for drug delivery systems. Spec Drug Deliv Syst 41:333–392

    Google Scholar 

  37. Dorpema JW (1995) Risk assessment of medical devices: evaluation of microbiological and toxicological safety. Radiat Phys Chem 46(4–6):605–609

    CAS  Google Scholar 

  38. Nair PD (1995) Currently practised sterilization methods-some inadvertent consequences. J Biomater Appl 10(2):121–135

    CAS  PubMed  Google Scholar 

  39. Burg KJ, Shalaby SW (1996) Radiation sterilization of medical devices and pharmaceuticals. Irradiat Polym 620:240–245

    CAS  Google Scholar 

  40. Cheung HY, Lau KT, Lu TP, Hui D (2007) A critical review on polymer-based bio-engineered materials for scaffold development. Compos B Eng 38(3):291–300

    Google Scholar 

  41. Fares MM, Sani ES, Lara RP, Oliveira RB, Khademhosseini A, Annabi N (2018) Interpenetrating network gelatine methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 6(11):2938–2950

    CAS  PubMed  Google Scholar 

  42. Venkatesan N, Shroff S, Jayachandran K, Doble M (2010) Polymers as ureteral stents. J Endourol 24(2):191–198

    PubMed  Google Scholar 

  43. Mayet N, Kumar P, Choonara YE, Tomar LK, Tyagi C, du Toit LC, Pillay V (2014) Synthesis of a semi-interpenetrating polymer network as a bioactive curcumin film. AAPS PharmSciTech 15(6):1476–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta KC, Ravi Kumar MNV (2000) Semi-interpenetrating polymer network beads of crosslinked chitosan–glycine for controlled release of chlorphenramine maleate. J Appl Polym Sci 76(5):672–683

    CAS  Google Scholar 

  45. Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20(8):316–332

    CAS  Google Scholar 

  46. Danso R, Hoedebecke B, Whang K, Sarrami S, Johnston A, Flipse S et al (2018) Development of an oxirane/acrylate interpenetrating polymer network (IPN) resin system. Dent Mater 34(10):1459

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7(2):69–75

    CAS  PubMed  Google Scholar 

  48. Upadhyay M, Adena SKR, Vardhan H, Yadav SK, Mishra B (2018) Development of biopolymers based interpenetrating polymeric network of capecitabine: a drug delivery vehicle to extend the release of the model drug. Int J Biol Macromol 115:907–919

    CAS  PubMed  Google Scholar 

  49. Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatine and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65(3):243–252

    CAS  Google Scholar 

  50. Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67(4):605–613

    CAS  Google Scholar 

  51. Selvakumaran S, Muhamad II (2015) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of cross linker. Int J Pharm 496(2):323–331

    CAS  PubMed  Google Scholar 

  52. Garcia J, Ruiz-Durántez E, Valderruten NE (2017) Interpenetrating polymer networks hydrogels of chitosan and poly(2-hydroxyethyl methacrylate) for controlled release of quetiapine. React Funct Polym 117:52–59

    CAS  Google Scholar 

  53. Zoratto N, Matricardi P (2018) Semi-IPNs and IPN-based hydrogels. In: Polymeric gels. Woodhead Publishing, pp 91–124

  54. Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25(17):3793–3805

    CAS  PubMed  Google Scholar 

  55. James J, Thomas GV, Akhina H, Thomas S (2016) Micro-and nano-structured interpenetrating polymer networks: state of the art, new challenges, and opportunities. Micro-and nano-structured interpenetrating polymer networks: from design to applications. Wiley, Hoboken

    Google Scholar 

  56. Lapasin R (2015) Rheological characterization of hydrogels. In: Matricardi P, Alhaique F, Coviello T (eds) Polysaccharide hydrogels: characterization and biomedical applications. CRC Press, Boca Raton, pp 83–137

    Google Scholar 

  57. Menard KP, Menard N (2006) Dynamic mechanical analysis. Encycl Anal Chem Appl Theory Instrum 15:1–25

    Google Scholar 

  58. Barszczewska-Rybarek I, Jaszcz K, Jurczyk S, Chladek G (2015) The novel semi-biodegradable interpenetrating polymer networks based on urethane-dimethacrylate and epoxy-polyester components as alternative biomaterials. Acta Bioeng Biomech 17(3):13–22

    PubMed  Google Scholar 

  59. Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels. Hydrog Med Pharm 1:1–27

    CAS  Google Scholar 

  60. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behaviour of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35

    CAS  Google Scholar 

  61. Zhang J, Peppas NA (2000) Synthesis and characterization of pH-and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33(1):102–107

    CAS  Google Scholar 

  62. Li X, Wu W, Wang J, Duan Y (2006) The swelling behavior and network parameters of guar gum/poly(acrylic acid) semi-interpenetrating polymer network hydrogels. Carbohydr Polym 66(4):473–479

    CAS  Google Scholar 

  63. Aldana AA, Rial-Hermida MI, Abraham GA, Concheiro A, Alvarez-Lorenzo C (2017) Temperature-sensitive biocompatible IPN hydrogels based on poly(NIPA-PEGdma) and photocrosslinkable gelatin methacrylate. Soft Mater 15(4):341–349

    CAS  Google Scholar 

  64. Pescosolido L, Vermonden T, Malda J, Censi R, Dhert WJ, Alhaique F et al (2011) In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomater 7(4):1627–1633

    CAS  PubMed  Google Scholar 

  65. Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM (2007) Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr Polym 69(4):678–687

    CAS  Google Scholar 

  66. Raj V, Priya P, Renji R, Suryamathi M, Kalaivani S (2018) Folic acid–egg white coated IPN network of carboxymethyl cellulose and egg white nanoparticles for treating breast cancer. Iran Polym J 27(10):721–731

    CAS  Google Scholar 

  67. Lohani A, Singh G, Bhattacharya SS, Hegde RR, Verma A (2016) Tailored-interpenetrating polymer network beads of κ-carrageenan and sodium carboxymethyl cellulose for controlled drug delivery. J Drug Deliv Sci Technol 31:53–64

    CAS  Google Scholar 

  68. George M, Abraham TE (2007) pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335(1–2):123–129

    CAS  PubMed  Google Scholar 

  69. Muhamad II, Fen LS, Hui NH, Mustapha NA (2011) Genipin-cross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydr Polym 83(3):1207–1212

    CAS  Google Scholar 

  70. Jana S, Saha A, Nayak AK, Sen KK, Basu SK (2013) Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B 105:303–309

    CAS  Google Scholar 

  71. AL-Kahtani AA, Sherigara BS (2014) Controlled release of diclofenac sodium through acrylamide grafted hydroxyethyl cellulose and sodium alginate. Carbohydr Polym 104:151–157

    CAS  PubMed  Google Scholar 

  72. Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX et al (2008) Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359(1–2):79–86

    CAS  PubMed  Google Scholar 

  73. Zmora S, Glicklis R, Cohen S (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23(20):4087–4094

    CAS  PubMed  Google Scholar 

  74. Nandini VV, Venkatesh KV, Nair KC (2008) Alginate impressions: a practical perspective. J Conserv Dent 11(1):37

    PubMed  PubMed Central  Google Scholar 

  75. El Batal H, Hasib A (2013) Optimization of extraction process of carob bean gum purified from carob seeds by response surface methodology. Optimization 12:1–10

    Google Scholar 

  76. Mudgil D, Barak S, Khatkar BS (2012) X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolysed guar gum. Int J Biol Macromol 50(4):1035–1039

    CAS  PubMed  Google Scholar 

  77. Mudgil D, Barak S, Khatkar BS (2011) Effect of hydrocolloids on the quality characteristics of tomato ketchup. Carp J Food Sci Technol 3(1):39–43

    Google Scholar 

  78. Daas PJ, Schols HA, de Jongh HH (2000) On the galactosyl distribution of commercial galactomannans. Carbohydr Res 329(3):609–619

    CAS  PubMed  Google Scholar 

  79. Maier H, Anderson M, Karl C, Magnuson K, Whistler RL (eds) (1993) Guar, locust bean, tara, and fenugreek gums. In: Industrial gums. Academic Press, Cambridge, pp 181–226

  80. Kaity S, Isaac J, Ghosh A (2013) Interpenetrating polymer network of locust bean gum–poly(vinyl alcohol) for controlled release drug delivery. Carbohydr Polym 94(1):456–467

    CAS  PubMed  Google Scholar 

  81. Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, Bhattacharyya UK (2010) Novel interpenetrating network microspheres of xanthan gum–poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine—in vitro and in vivo evaluation. Drug Deliv 17(7):508–519

    CAS  PubMed  Google Scholar 

  82. Ferdinando JC (2000) Formulation solutions-softgels. Pharm Manuf Pack 10:69–73

    Google Scholar 

  83. Muniruzzaman M, Tabata Y, Ikada Y (1998) Complexation of basic fibroblast growth factor with gelatin. J Biomater Sci Polym Ed 9(5):459–473

    CAS  PubMed  Google Scholar 

  84. Park S, Edwards S, Hou S, Boudreau R, Yee R, Jeong KJ (2019) A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin. Biomater Sci 7:1276–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sahoo R, Sahoo S, Nayak PL (2010) Release behaviour of anticancer drug paclitaxel from tamarind seed polysaccharide galactoxyloglucan. Eur J Sci Res 47(2):197–206

    Google Scholar 

  86. Saettone M, Burgalassi E, Boldrini P, Bianchini GL (1997) Ophthalmic solutions viscosified with tamarind seed polysaccharide. International patent application PCT/IT97/00026

  87. Kaur H, Yadav S, Ahuja M, Dilbaghi N (2012) Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer. Carbohydr Polym 90(4):1543–1549

    CAS  PubMed  Google Scholar 

  88. Goyal P, Kumar V, Sharma P (2007) Carboxymethylation of tamarind kernel powder. Carbohydr Polym 69(2):251–255

    CAS  Google Scholar 

  89. Pal S, Sen G, Mishra S, Dey RK, Jha U (2008) Carboxymethyl tamarind: synthesis, characterization and its application as novel drug-delivery agent. J Appl Polym Sci 110(1):392–400

    CAS  Google Scholar 

  90. Singh V, Kumar P (2011) Carboxymethyl tamarind gum–silica nanohybrids for effective immobilization of amylase. J Mol Catal B Enzym 70(1–2):67–73

    CAS  Google Scholar 

  91. Jana S, Sharma R, Maiti S, Sen KK (2016) Interpenetrating hydrogels of O-carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir. Int J Biol Macromol 92:1034–1039

    CAS  PubMed  Google Scholar 

  92. Aalaie J, Rahmatpour A, Vasheghani-Farahani E (2009) Rheological and swelling behavior of semi-interpenetrating networks of polyacrylamide and scleroglucan. Polym Adv Technol 20(12):1102–1106

    CAS  Google Scholar 

  93. Meena LK, Raval P, Kedaria D, Vasita R (2018) Study of locust bean gum reinforced cyst-chitosan and oxidized dextran based semi-IPN cryogel dressing for haemostatic application. Bioact Mater 3(3):370–384

    PubMed  Google Scholar 

  94. Wen C, Lu L, Li X (2014) An interpenetrating network bio hydrogel of gelatine and gellan gum by using a combination of enzymatic and ionic crosslinking approaches. Polym Int 63(9):1643–1649

    CAS  Google Scholar 

  95. Kulkarni RV, Mangond BS, Mutalik S, Sa B (2011) Interpenetrating polymer network microcapsules of gellan gum and egg albumin entrapped with diltiazem–resin complex for controlled release application. Carbohydr Polym 83(2):1001–1007

    CAS  Google Scholar 

  96. Santos JR, Alves NM, Mano JF (2010) New thermo-responsive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid semi-interpenetrated polymer networks: swelling properties and drug release studies. J Bioact Compat Polym 25(2):169–184

    CAS  Google Scholar 

  97. Pasale SK, Cerroni B, Ghugare SV, Paradossi G (2014) Multiresponsive hyaluronan-p (NiPAAm) “click”-linked hydrogels. Macromol Biosci 14(7):1025–1038

    CAS  PubMed  Google Scholar 

  98. Kim AR, Lee SL, Park SN (2018) Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly(N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol 118:731–740

    CAS  PubMed  Google Scholar 

  99. Pan Y, Wang J, Cai P, Xiao H (2018) Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier. Int J Biol Macromol 118:132–140

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kalpana Nagpal or Madhu Gupta.

Ethics declarations

Conflict of interest

The authors revealed that there is no conflict of interest with reference to the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, N., Rani, R., Khan, A. et al. Interpenetrating polymer network as a pioneer drug delivery system: a review. Polym. Bull. 77, 5027–5050 (2020). https://doi.org/10.1007/s00289-019-02996-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02996-5

Keywords

Navigation