Skip to main content
Log in

Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biodegradable chitosan films were produced using lactic and acetic acid solutions and glutaraldehyde as crosslinking agent by casting technique. The aim of this study was to evaluate the influence of different acids and the crosslinking on the characteristics and biodegradability of chitosan films. The films were analyzed through thickness, swelling degree, mechanical and thermal properties, chemical structure and biodegradability. The glutaraldehyde release was also evaluated. All films’ properties are deeply affected by the acid type and glutaraldehyde crosslinking. Crosslinking reduced the swelling degree of films, also increasing their fragility. The glutaraldehyde release from the films to the simulant solutions was not observed after the incubation period. Through biodegradation tests, it was observed that the crosslinking does not prevent films’ degradability but longer time is required. The qualitative analysis of ecotoxicity of the films suggests the possibility of composting the developed films. The films presented potential for application as membranes and in packaging, and different formulations can be used according to the desired final characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cerruti P, Santagata G, Gomez D’Ayala G, Ambrogi V, Carfagna C, Malinconico M, Persico P (2011) Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polym Degrad Stab 96:839–846. https://doi.org/10.1016/j.polymdegradstab.2011.02.003

    Article  CAS  Google Scholar 

  2. Piñeros-Hernandez D, Medina-Jaramillo C, López-Córdoba A, Goyanes S (2017) Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll 63:488–495. https://doi.org/10.1016/j.foodhyd.2016.09.034

    Article  CAS  Google Scholar 

  3. Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag Res 35:132–140. https://doi.org/10.1177/0734242X16683272

    Article  PubMed  Google Scholar 

  4. Chuayjuljit S, Su-Uthai S, Charuchinda S (2010) Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Manag Res 28:109–117. https://doi.org/10.1177/0734242X09339324

    Article  CAS  PubMed  Google Scholar 

  5. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001

    Article  CAS  Google Scholar 

  6. Sencadas V, Correia DM, Ribeiro C, Moreira S, Botelho G, Gómez Ribelles JL, Lanceros-Mendez S (2012) Physical–chemical properties of cross-linked chitosan electrospun fiber mats. Polym Test 31:1062–1069. https://doi.org/10.1016/j.polymertesting.2012.07.010

    Article  CAS  Google Scholar 

  7. Salehi E, Daraei P, Arabi Shamsabadi A (2016) A review on chitosan-based adsorptive membranes. Carbohydr Polym 152:419–32. https://doi.org/10.1016/j.carbpol.2016.07.033

    Article  CAS  PubMed  Google Scholar 

  8. Zhang W, Yu Z, Qian Q, Zhang Z, Wang X (2010) Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure. J Membr Sci 348:213–223. https://doi.org/10.1016/j.memsci.2009.11.003

    Article  CAS  Google Scholar 

  9. Van Den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242. https://doi.org/10.1016/j.carbpol.2014.07.039

    Article  CAS  PubMed  Google Scholar 

  10. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT Food Sci Technol 43:837–842. https://doi.org/10.1016/j.lwt.2010.01.021

    Article  CAS  Google Scholar 

  11. Souza VGL, Fernando AL, Pires JRA, Rodrigues PF, Lopes AAS, Fernandes FMB (2017) Physical properties of chitosan films incorporated with natural antioxidants. Ind Crops Prod 107:565–572. https://doi.org/10.1016/j.indcrop.2017.04.056

    Article  CAS  Google Scholar 

  12. Wang Y, Xia Y, Zhang P, Ye L, Wu L, He S (2017) Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food Bioprocess Technol 10:503–511. https://doi.org/10.1007/s11947-016-1833-8

    Article  CAS  Google Scholar 

  13. Chen F, Gällstedt M, Olsson RT, Gedde UW, Hedenqvist MS (2015) Unusual effects of monocarboxylic acids on the structure and on the transport and mechanical properties of chitosan films. Carbohydr Polym 132:419–429. https://doi.org/10.1016/j.carbpol.2015.06.050

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez-Saiz P, Lagaron JM, Ocio MJ (2009) Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocoll 23:913–921. https://doi.org/10.1016/j.foodhyd.2008.06.001

    Article  CAS  Google Scholar 

  15. Leceta I, Guerrero P, Ibarburu I, Dueñas MT, De La Caba K (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899. https://doi.org/10.1016/j.jfoodeng.2013.01.022

    Article  CAS  Google Scholar 

  16. Lago MA, Sendón R, de Quirós ARB, Sanches-Silva A, Costa HS, Sánchez-Machado DI, Valdez HS, Angulo I, Aurrekoetxea GP, Torrieri E, López-Cervantes J, Paseiro P (2014) Preparation and characterization of antimicrobial films based on chitosan for active food packaging applications. Food Bioprocess Technol 7:2932–2941. https://doi.org/10.1007/s11947-014-1276-z

    Article  CAS  Google Scholar 

  17. Tasselli F, Mirmohseni A, Seyed Dorraji MS, Figoli A (2013) Mechanical, swelling and adsorptive properties of dry–wet spun chitosan hollow fibers crosslinked with glutaraldehyde. React Funct Polym 73:218–223. https://doi.org/10.1016/j.reactfunctpolym.2012.08.007

    Article  CAS  Google Scholar 

  18. Aguirre-Loredo RY, Rodríguez-Hernández AI, Morales-Sánchez E, Gómez-Aldapa CA, Velazquez G (2016) Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem 196:560–566. https://doi.org/10.1016/j.foodchem.2015.09.065

    Article  CAS  PubMed  Google Scholar 

  19. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  20. Chen RH, Chen WY, Wang ST, Hsu CH, Tsai ML (2009) Changes in the Mark–Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths. Carbohydr Polym 78:902–907. https://doi.org/10.1016/j.carbpol.2009.07.027

    Article  CAS  Google Scholar 

  21. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051. https://doi.org/10.1016/j.reactfunctpolym.2008.03.002

    Article  CAS  Google Scholar 

  22. Leiva A, Bonardd S, Pino M, Saldías C, Kortaberria G, Radić D (2015) Improving the performance of chitosan in the synthesis and stabilization of gold nanoparticles. Eur Polym J 68:419–431. https://doi.org/10.1016/j.eurpolymj.2015.04.032

    Article  CAS  Google Scholar 

  23. Neto CGT, Dantas TNC, Fonseca JLC, Pereira MR (2005) Permeability studies in chitosan membranes. Effects of crosslinking and poly(ethylene oxide) addition. Carbohydr Res 340:2630–2636. https://doi.org/10.1016/j.carres.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  24. Gonsalves AA, Araújo CRM, Soares NA, Goulart MOF, Abreu FC (2011) Diferentes estratégias para a reticulação de quitosana. Quim Nova 34:1215–1223. https://doi.org/10.1590/S0100-40422011000700021

    Article  CAS  Google Scholar 

  25. Beppu MM, Vieira RS, Aimoli CG, Santana CC (2007) Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Membr Sci 301:126–130. https://doi.org/10.1016/j.memsci.2007.06.015

    Article  CAS  Google Scholar 

  26. Liu YL, Su YH, Lai JY (2004) In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer (Guildf) 45:6831–6837. https://doi.org/10.1016/j.polymer.2004.08.006

    Article  CAS  Google Scholar 

  27. Poon L, Wilson LD, Headley JV (2014) Chitosan–glutaraldehyde copolymers and their sorption properties. Carbohydr Polym 109:92–101. https://doi.org/10.1016/j.carbpol.2014.02.086

    Article  CAS  PubMed  Google Scholar 

  28. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34. https://doi.org/10.1016/S0939-6411(03)00161-9

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Gao X, Wang Y, Zhang X, Tong Z (2013) Comparison of chitosan/starch composite film properties before and after cross-linking. Int J Biol Macromol 52:275–279. https://doi.org/10.1016/j.ijbiomac.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  30. Rinaudo M (2010) New way to crosslink chitosan in aqueous solution. Eur Polym J 46:1537–1544. https://doi.org/10.1016/j.eurpolymj.2010.04.012

    Article  CAS  Google Scholar 

  31. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22:763–768. https://doi.org/10.1016/S0142-9612(00)00236-2

    Article  CAS  PubMed  Google Scholar 

  32. Niamsa N, Baimark Y (2009) Preparation and characterization of highly flexible chitosan films for use as food packaging. Am J Food Technol 4:162–169. https://doi.org/10.3923/ajft.2009.162.169

    Article  CAS  Google Scholar 

  33. Lim H, Hoag SW (2013) Plasticizer effects on physical-mechanical properties of solvent cast Soluplus® films. AAPS PharmSciTech 14:903–910. https://doi.org/10.1208/s12249-013-9971-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Britto D, Campana-Filho SP (2007) Kinetics of the thermal degradation of chitosan. Thermochim Acta 465:73–82. https://doi.org/10.1016/j.tca.2007.09.008

    Article  CAS  Google Scholar 

  35. Tripathi S, Mehrotra GK, Dutta PK (2010) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohydr Polym 79:711–716. https://doi.org/10.1016/j.carbpol.2009.09.029

    Article  CAS  Google Scholar 

  36. Fiori APSM, Gabiraba VP, Praxedes APP, Nunes MRS, Balliano TL, da Silva RC, Tonholo J, Ribeiro AS (2014) Preparação e caracterização de nanocompósitos poliméricos baseados em quitosana e argilo minerais. Polímeros 24:628–635. https://doi.org/10.1590/0104-1428.1572

    Article  CAS  Google Scholar 

  37. Ma B, Li X, Qin A, He C (2013) A comparative study on the chitosan membranes prepared from glycine hydrochloride and acetic acid. Carbohydr Polym 91:477–482. https://doi.org/10.1016/j.carbpol.2012.07.081

    Article  CAS  PubMed  Google Scholar 

  38. Matet M, Heuzey M-C, Pollet E, Ajji A, Avérous L (2013) Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydr Polym 95:241–251. https://doi.org/10.1016/j.carbpol.2013.02.052

    Article  CAS  PubMed  Google Scholar 

  39. Lewandowska K (2009) Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim Acta 493:42–48. https://doi.org/10.1016/j.tca.2009.04.003

    Article  CAS  Google Scholar 

  40. Mamede LC, Caetano BL, Rocha LA, Ferreira EM, Cestari A, Kfuri CR, Ciuffi KJ, Calefi PS, Mello C, Cunha WR, Nassar EJ (2006) Comportamento térmico de alguns fármacos e medicamentos. Rev Ciencias Farm Basica e Apl 27:151–155

    CAS  Google Scholar 

  41. Quinayá DCP, Durán HAE, Ballesteros DYP, Quintero CV, Cataño DL (2009) Obtención, Electrodeposición y Caracterización de un Recubrimiento Polimérico Bioabsorbible a partir de Ácido Láctico para Aplicaciones Biomédicas. Ingeniare Rev Chil Ing 17(3):365–374. https://doi.org/10.4067/S0718-33052009000300010

    Article  Google Scholar 

  42. Silva RM, Silva GA, Coutinho OP, Mano JF, Reis RL (2004) Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. J Mater Sci Mater Med 15:1105–1112. https://doi.org/10.1023/B:JMSM.0000046392.44911.46

    Article  CAS  PubMed  Google Scholar 

  43. Gierszewska M, Jakubowska E, Olewnik-Kruszkowska E (2019) Effect of chemical crosslinking on properties of chitosan–montmorillonite composites. Polym Test 77:105872. https://doi.org/10.1016/j.polymertesting.2019.04.019

    Article  CAS  Google Scholar 

  44. Monteiro OA, Airoldi C (1999) Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26:119–128. https://doi.org/10.1016/S0141-8130(99)00068-9

    Article  CAS  PubMed  Google Scholar 

  45. Epure V, Griffon M, Pollet E, Avérous L (2011) Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr Polym 83:947–952. https://doi.org/10.1016/j.carbpol.2010.09.003

    Article  CAS  Google Scholar 

  46. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481. https://doi.org/10.1016/j.carbpol.2008.11.015

    Article  CAS  Google Scholar 

  47. Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crops Prod 109:619–626. https://doi.org/10.1016/j.indcrop.2017.09.020

    Article  CAS  Google Scholar 

  48. Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan-starch composite film: preparation and characterization. Ind Crops Prod 21:185–192. https://doi.org/10.1016/j.indcrop.2004.03.002

    Article  CAS  Google Scholar 

  49. Taheri M, Ghiaci M, Shchukarev A (2018) Cross-linked chitosan with a dicationic ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of carbon dioxide with epoxides into cyclic carbonates. New J Chem 42:587–597. https://doi.org/10.1039/C7NJ03665E

    Article  CAS  Google Scholar 

  50. Takara EA, Marchese J, Ochoa NA (2015) NaOH treatment of chitosan films: Impact on macromolecular structure and film properties. Carbohydr Polym 132:25–30. https://doi.org/10.1016/j.carbpol.2015.05.077

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from FAPERGS (Research Support Foundation of the State of Rio Grande do Sul, Brazil) (Grant No. 17/2551-0001102-3), CNPq (National Council for Scientific and Technological Development, Brazil) and CAPES (Coordination for the Improvement of Higher Level Personnel, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M. Frick Pavoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavoni, J.M.F., dos Santos, N.Z., May, I.C. et al. Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films. Polym. Bull. 78, 981–1000 (2021). https://doi.org/10.1007/s00289-020-03140-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03140-4

Keywords

Navigation