Skip to main content
Log in

Improving the efficacy of PES-based mixed matrix membranes incorporated with citric acid–amylose-modified MWCNTs for HA removal from water

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Either difficulty of dispersion of carbon nanotubes (CNTs) in the solvent or low compatibility between polymeric chains of membrane and CNTs results in major drawbacks to using CNTs in the structure of mixed matrix membranes. CNTs’ functionalization has already gained increasing attention to overcome such problems. Herein, polyethersulfone-based mixed matrix membranes incorporated with citric acid–amylose-decorated multiwall carbon nanotubes (Am–MWCNTs–CA) were fabricated. These new synthesized nanoparticles and nanocomposite membranes were characterized by spectroscopic measurement methods such as IR spectroscopy, UV–Vis spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, water contact angle, attenuated total reflection-infrared, atomic force microscopy (AFM), and scanning electron microscopy (SEM). The pure water flux of the modified membrane incorporated with 0.5 w/v% Am–MWCNTs–CA increased over 130% in comparison with the unmodified membrane. Flux recovery ratio results illustrated that the membrane modified with 0.5 w/v% Am–MWCNTs–CA showed superior antifouling capacity of over 95.2%. SEM and AFM images showed significant and observable changes in surface morphology along with the formation of large finger-like macrovoids in the presence of Am–MWCNTs–CA. The presence of more COOH and OH functional groups on the surface of the modified membranes enforced the Donnan exclusion theory to reject rather divalent ions due to the migration of Am–MWCNTs–CA nanocomposite to the surface of membranes. In addition, humic acid removal capability of the prepared membranes was also calculated to be as high as 97.4% for the membrane embedded with 0.5 w/v% Am–MWCNTs–CA (M3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S et al (2012) Carbon nanotube-based membranes: fabrication and application to desalination. J Ind Eng Chem 18(5):1551–1559

    Article  CAS  Google Scholar 

  2. Arefi-Oskoui S, Khataee A, Vatanpour V (2017) Modeling and optimization of NLDH/PVDF ultrafiltration nanocomposite membrane using artificial neural network-genetic algorithm hybrid. ACS Combin Sci 19(7):464–477

    Article  CAS  Google Scholar 

  3. Diallo M, Street A, Sustich R, Duncan J, Savage N (2009) Nanotechnology applications for clean water: solutions for improving water quality. William Andrew, Norwich

    Google Scholar 

  4. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8

    Article  CAS  Google Scholar 

  5. Elimelech M, Chen WH, Waypa JJ (1994) Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination 95(3):269–286

    Article  CAS  Google Scholar 

  6. Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J et al (2018) Nanocomposite membranes for water separation and purification: fabrication, modification, and applications. Sep Purif Technol 213:465–499

    Article  Google Scholar 

  7. Fang W, Shi L, Wang R (2014) Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability. J Membr Sci 468:52–61

    Article  CAS  Google Scholar 

  8. He G, Zhao J, Hu S, Li L, Li Z, Li Y et al (2014) Functionalized carbon nanotube via distillation precipitation polymerization and its application in Nafion-based composite membranes. ACS Appl Mater Interfaces 6(17):15291–15301

    Article  CAS  Google Scholar 

  9. Kumar M, Gholamvand Z, Morrissey A, Nolan K, Ulbricht M, Lawler J (2016) Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO–TiO2 nanocomposite and polysulfone for humic acid removal. J Membr Sci 506:38–49

    Article  CAS  Google Scholar 

  10. Lee J, Ye Y, Ward AJ, Zhou C, Chen V, Minett AI et al (2016) High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Sep Purif Technol 163:109–119

    Article  CAS  Google Scholar 

  11. Liu J, Fei L, Maladen M, Hamaker BR, Zhang G (2009) Iodine binding property of a ternary complex consisting of starch, protein, and free fatty acids. Carbohydr Polym 75(2):351–355

    Article  CAS  Google Scholar 

  12. Ma L, Dong X, Chen M, Zhu L, Wang C, Yang F et al (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes 7(1):16

    Article  Google Scholar 

  13. Mallakpour S, Ezhieh AN (2017) Preparation and characterization of chitosan-poly(vinyl alcohol) nanocomposite films embedded with functionalized multi-walled carbon nanotube. Carbohydr Polym 166:377–386

    Article  CAS  Google Scholar 

  14. Mansourpanah Y (2013) Development and changing the surface and performance of a novel thin layer membrane in the presence of epichlorohydrine. Desalination 311:221–226

    Article  CAS  Google Scholar 

  15. Mansourpanah Y, Amiri Z (2014) Preparation of modified polyethersulfone nanoporous membranes in the presence of sodium tripolyphosphate for color separation; characterization and antifouling properties. Desalination 335(1):33–40

    Article  CAS  Google Scholar 

  16. Mansourpanah Y, Jafari Z (2015) Efficacy of different generations and concentrations of PAMAM–NH2 on the performance and structure of TFC membranes. React Funct Polym 93:178–189

    Article  CAS  Google Scholar 

  17. Pan S, Li J, Noonan O, Fang X, Wan G, Yu C et al (2017) Dual-functional ultrafiltration membrane for simultaneous removal of multiple pollutants with high performance. Environ Sci Technol 51(9):5098–5107

    Article  CAS  Google Scholar 

  18. Qiu S, Wu L, Pan X, Zhang L, Chen H, Gao C (2009) Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes. J Membr Sci 342(1–2):165–172

    Article  CAS  Google Scholar 

  19. Roy S, Bhadra M, Mitra S (2014) Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation. Sep Purif Technol 136:58–65

    Article  CAS  Google Scholar 

  20. Shao J, Hou J, Song H (2011) Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes. Water Res 45(2):473–482

    Article  CAS  Google Scholar 

  21. Teow Y, Ooi B, Ahmad A, Lim J (2012) Mixed-matrix membrane for humic acid removal: influence of different types of TiO2 on membrane morphology and performance. Int J Chem Eng Appl 3(6):374

    CAS  Google Scholar 

  22. Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  Google Scholar 

  23. Trivedi S, Alameh K (2016) Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes. SpringerPlus 5(1):1158

    Article  Google Scholar 

  24. Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty M, Figoli A (2018) Progress of nanocomposite membranes for water treatment. Membranes 8(2):18

    Article  Google Scholar 

  25. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375(1–2):284–294

    Article  CAS  Google Scholar 

  26. Wang L, Song X, Wang T, Wang S, Wang Z, Gao C (2015) Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application. Appl Surf Sci 330:118–125

    Article  CAS  Google Scholar 

  27. Wang W, Zhu L, Shan B, Xie C, Liu C, Cui F et al (2018) Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 548:459–469

    Article  CAS  Google Scholar 

  28. Wang Y-Q, Su Y-L, Ma X-L, Sun Q, Jiang Z-Y (2006) Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance. J Membr Sci 283(1–2):440–447

    Article  CAS  Google Scholar 

  29. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1(5):1–15

    Article  Google Scholar 

  30. Xue S-M, Xu Z-L, Tang Y-J, Ji C-H (2016) Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs). ACS Appl Mater Interfaces 8(29):19135–19144

    Article  CAS  Google Scholar 

  31. Yang Y, Li X, Shen L, Wang X, Hsiao BS (2017) Ionic cross-linked poly(acrylonitrile-co-acrylic acid)/polyacrylonitrile thin film nanofibrous composite membrane with high ultrafiltration performance. Ind Eng Chem Res 56(11):3077–3090

    Article  CAS  Google Scholar 

  32. Zhang C, Wei K, Zhang W, Bai Y, Sun Y, Gu J (2017) Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration. ACS Appl Mater Interfaces 9(12):11082–11094

    Article  CAS  Google Scholar 

  33. Zhao F-Y, Ji Y-L, Weng X-D, Mi Y-F, Ye C-C, An Q-F et al (2016) High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes. ACS Appl Mater Interfaces 8(10):6693–6700

    Article  CAS  Google Scholar 

  34. Zhu Y, Xie W, Zhang F, Xing T, Jin J (2017) Superhydrophilic in situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl Mater Interfaces 9(11):9603–9613

    Article  CAS  Google Scholar 

  35. Zinadini S, Rostami S, Vatanpour V, Jalilian E (2017) Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J Membr Sci 529:133–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Parsamanesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsamanesh, M., Mansourpanah, Y. & Dadkhah Tehrani, A. Improving the efficacy of PES-based mixed matrix membranes incorporated with citric acid–amylose-modified MWCNTs for HA removal from water. Polym. Bull. 78, 1293–1311 (2021). https://doi.org/10.1007/s00289-020-03162-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03162-y

Keywords

Navigation