Skip to main content

Advertisement

Log in

Study and modeling of thermomechanical properties of jute and Alfa fiber-reinforced polymer matrix hybrid biocomposite materials

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, we have investigated and studied the effect of thermal stress on the fiber–matrix interface damage of three new hybrid biocomposite and biocomposite materials. Our genetic simulation based on Weibull probabilistic models showed that the jute–Alfa/PEEK (PEEK: thermoplastic matrix—polyetheretherketone) hybrid biocomposite material is more resistant to the mechanical and thermal stress applied comparing with the other biocomposites such as jute/PEEK and Alfa/PEEK with the same volume fraction used in our genetic model. Our results also show that natural fibers improve the physical properties of biocomposite materials, especially hybrid biocomposite materials. This finding is similar to that found by Antoine Le Duigou et al. where they have shown experimentally that the natural reinforcements greatly improve the properties of composite materials and also they have a very low environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Fowler Paul A, Hughes J, Elias Mark, Robert M (2006) Bio-composites: technology, environmental credentials and market forces. J Sci Food Agric 86(12):1781–1789

    Article  CAS  Google Scholar 

  2. Ariadurai S (2013) Bio-composites: current status and future trends. The Open University of Sri Lanka, Nawala, p 2013

    Google Scholar 

  3. Vogüé A (1927) Notes sur la culture et la production du Jute. Revue de botanique appliquée et d’agriculture coloniale 7:447–461

    Article  Google Scholar 

  4. Med Ben Ali A, Bencheikh R, Vermeulen B, Perwuelz A, Chaker A (2006) Réalisation d’un non-tissé à base de fibres végétales d’alfa, 2ème Congrès International de la Recherche Appliquée en Textile (Cirat 2) Monastir, Tunisie

  5. Michud A, Giustini B (2009) Les fibres cellulosiques à usage textile. Mémoire, Cellule de veille technologique de Grenoble INP-Pagora, École internationale du papier, de la communication imprimée et des biomatériaux

  6. Feughelman M (1997) Mechanical properties of wool fibers & the two-phase model », Mechanical properties and structure of alpha-keratin fibers: wool, human and related fibers. University of New South Wales Press, Randwick, pp 28–59

    Google Scholar 

  7. Ben Brahim S, Ben Cheikh R (2007) Influence of fiber orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67(1):140–147. https://doi.org/10.1007/s00289-020-03183-7

    Article  CAS  Google Scholar 

  8. Boughriet R (2009) Fibres végétales : de nouvelles applications prometteuses émergent. www.Actu-Environnement.com

  9. Casey R, Grove C (1947) Fibers. J Ind Eng Chem 39(10):1213–1215

    Article  CAS  Google Scholar 

  10. Gourier C (2016) Contribution à l’étude de matériaux biocomposites à matrice thermoplastique polyamide-11 et renforcés par des fibres Lin. Thèse de doctorat, Université de Bretagne Sud

  11. Fuentes CA, Tran LQN, Van Hellemont M, Janssens V, Dupont-Gillain C, Van Vuure AW et al (2013) Effect of physical adhesion on mechanical behaviour of bamboo fibre reinforced thermoplastic composites. Colloid Surf A 418:7–15

    Article  CAS  Google Scholar 

  12. Thomason J, Yang L (2013) Temperature dependence of the interfacial shear strength in glass reinforced polypropylene and epoxy composites

  13. Marrot L, Bourmaud A, Bono P, Baley C (2014) Multi-scale study of the adhesion between flax fibers and biobased thermoset matrices. Mater Des 62:47–56

    Article  CAS  Google Scholar 

  14. Le Duigou Antoine, Davies P, Baley C (2010) Macroscopic analysis of interfacial properties of Flax/PLLA biocomposites. Compos Sci Technol 70:1612–1620

    Article  CAS  Google Scholar 

  15. Hodzic A, Kim JK, Stachurski ZH (2001) Nano-indentation and nano-scratch of polymer/glass interfaces. II: model of interphases in water aged composite materials. Polymer 42:5701–5710

    Article  CAS  Google Scholar 

  16. Lee SH, Wang S, Pharr GM, Xu H (2007) Evaluation of interphase properties in a cellulose fiber reinforced polypropylene composite by nanoindentation and finite element analysis. Compos A Appl Sci Manuf 38:1517–1524

    Article  CAS  Google Scholar 

  17. Stamboulis A, Baillie C, Schulz E (1999) Interfacial characterisation of flax fibre-thermoplastic polymer composites by the pull-out test. Die Angewandte Makromolekulare Chemie 272:117–120

    Article  CAS  Google Scholar 

  18. Yang L, Thomason JL (2012) Development and application of micromechanical techniques for characterising interfacial shear strength in fibre-thermoplastic composites. Polym Test 31:895–903

    Article  CAS  Google Scholar 

  19. Joffe R, Andersons J, Wallström L (2003) Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Compos A Appl Sci Manuf 34:603–612

    Article  CAS  Google Scholar 

  20. Huber T, Müssig J (2008) Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test. Compos Interfaces 15:335–349

    Article  CAS  Google Scholar 

  21. Awal A, Cescutti G, Ghosh SB, Müssig J (2011) Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos A Appl Sci Manuf 42:50–56

    Article  CAS  Google Scholar 

  22. Le Duigou Antoine, Baley C, Grohens Y, Davies P, Cognard J-Y, Créach’cadec R et al (2014) A multi-scale study of the interface between natural fibres and a biopolymer. Compos A Appl Sci Manuf 65:161–168

    Article  CAS  Google Scholar 

  23. Le Duigou Antoine, Kervoelen A, Le Grand A, Nardin M, Baley C (2014) Interfacial properties of flax fibre–epoxy resin systems: existence of a complex interphase. Compos Sci Technol 100:152–157

    Article  CAS  Google Scholar 

  24. Netravali A, Stone D, Ruoff S, Topoleski L (1989) Continuous micro-indenter push-through technique for measuring interfacial shear strength of fiber composites. Compos Sci Technol 34:289–303

    Article  CAS  Google Scholar 

  25. Zhandarov S, Mäder E (2005) Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. Compos Sci Technol 65:149–160

    Article  CAS  Google Scholar 

  26. Baxevanakis C (1994) Statistical behavior of laminated composites at failure. Thèse, Ecole des Mines de Paris

  27. Harlow DG, Phoenix SL (1978) The chain of bundles probability model for the strength of fibrous materials 1: analysis and conjectures. J Compos Mater 12:195–213

    Article  Google Scholar 

  28. Scop PM, Argon AS (1967) Statistical theory of strength of laminated composites. J Compos Mater 1:92–99

    Article  Google Scholar 

  29. Weibull W (1939) A statistical theory of the strength of materials. R Swedish Acad Engl Sci Proc 151:1–45

    Google Scholar 

  30. Mokaddem A, Alami M, Boutaous A (2012) A study by a genetic algorithm for optimizing the arrangement of the fibers on the damage to the fiber–matrix interface of a composite material. J Tex Inst 103(12):1376–1382

    Article  CAS  Google Scholar 

  31. Chateauminois A (2000) Cours Matériaux composites: descrisption microstructure d’un composite. https://fr.scribd.com/document/215287303/Microstructure. Accessed Feb 2019

  32. Mokaddem A, Alami M, Temimi L, Boutaous A (2012) Effect of heat stress on the damage of the fibre matrix interface of a composite material (T300/914) by a genetic algorithm. Fibres Text East Europe 20(6):98–101

    Google Scholar 

  33. Jérémie A (2009) Etude comparative du comportement composites à matrice thermoplastique ou thermodurcissable. Autre. INSA de Rouen. Français. NNT: 2009ISAM0012

  34. Borgna T (2017) Etude des propriétés de composite à matrice thermoplastique thermostable au delà de leur température de transition vitreuse. Thèse de doctorat à l’Université de Pau et des Pays de l’Adour, p 196

  35. Red C (2014) The outlook for thermoplastics in aerospace composites. 2014–2023. In: High-performance composites, Gardner Business Media, Inc., Cincinatti, p 54–63

  36. Chevalier N (2008) Projet TOUPIE cahier des charges matériau et sélection matériau, rapport n°DITT-08-0248

  37. Walther BM (1998) An investigation of the tensile strength and stiffness of unidirectional polymer-matrix, carbon-fiber composites under the influence of elevated temperatures. In: Master’s Thesis in engineering science and mechanics, Virginia Polytechnic Institute and State University

  38. Mohamed D (2012) Evaluation du potentiel textile des fibres d’Alfa (Stipa Tenacissima L.) caractérisation physico-chimique de la fibre au fil. Thèse de Doctorat. Université de Haute Alsac e-Mulhouse

  39. Hinrichsena ACKG (1991) Processing and characterization of jute fiber reinforced thermoplastic polymers. Polym Plast Technol Eng 30:5–6

    Google Scholar 

  40. Muthu SS, Gardetti M (2016) Sustainable fibres for fashion industry, N°2, vol 103. Springer, Singapore

    Book  Google Scholar 

  41. Hassan ABSK, Sreenath V, Yang W, Mahendra M, Gharia T, Jeffries W (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20

    Article  Google Scholar 

  42. Behera AK, Avancha S, Basak RK, Sen R, Adhikari B (2012) Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohydr Polym 88(1):329–335

    Article  CAS  Google Scholar 

  43. Richard C (2018) Caractérisation chimique des fibres d’asclépiade et l’effet de différents traitements sur son comportement. SCA 730 Activité de recherche à l’Université de Sherbrooke, faculté de génie mécanique, p 112

  44. Jabbar A, Militký J, Wiener J, MadhukarKale B, Ali U, Rwawiire S (2017) Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Compos Struct 161(1):340–349

    Article  Google Scholar 

  45. Taj S, Munawar M, Ali Khan S (2007) Natural fiber-reinforced polymer composites. Proc Pakistan Acad Sci 44(2):129–144

    CAS  Google Scholar 

  46. Paiva MC, Ammar I, Campos AR, Cheikh RB, Cunha AM (2006) Alfa fibres: mechanical, morphological and interfacial characterization. Compos Sci Technol 67:1132–1138

    Article  CAS  Google Scholar 

  47. Doumi B, Mokaddem A, Benrekaa N, Alami M, Beldjoudi N, Boutaous A (2015) Simulation by a genetic algorithm and location by the non-linearacoustic technique of the shear damage to the fiber-matrix interface of a hybrid composite material alfa-carbon/epoxy. J Hybrid Mater De Gruyter 2015(2):10–16. https://doi.org/10.1515/hyma-2015-0002

    Article  Google Scholar 

  48. Johnson PA, McCall KR (1994) Observation and implications of nonlinear elastic wave response in rock. Geophys Res Lett 21(3):165–168

    Article  Google Scholar 

  49. Moussatov A, Castagnède B, Gusev V (2001) Observation of nonlinear interaction of acoustic waves in granular materials: demodulation process. Phys Lett A 283:216–223

    Article  CAS  Google Scholar 

  50. Nagy PB (1998) Fatigue damage assesment by nonlinear ultrasonic material characterization. Ultrasonics 36:375

    Article  Google Scholar 

  51. El Guerjouma R, Goujon I, Nachad H, Faiz A, Godin N, Bentahar M, Baboux JC (2002) Linear and non linear ultrasonics for material damage evaluation and health monitoring. Matériaux Tech 90:48–50

    Article  Google Scholar 

  52. Van Den Abeele KE (1996) Elastic pulsed wave propagation in media with second or higher-order nonlinearity. Part I. Theoretical framework. J Acoust Soc 99(6):3334–3345

    Article  Google Scholar 

  53. Van Den Abeele K, Johnson PA (1996) Elastic pulsed wave propagation in media with second or higher-order nonlinearity. Part II. Simulation of experimental measurement on berea sandstone. J Acoust Soc 99(6):3346–3352

    Article  Google Scholar 

  54. Zheng Y, Maev RG, Solodov IY (1999) Nonlinear acoustic applications for materials characterization. Can J Phys 77:927–967

    Article  CAS  Google Scholar 

  55. Ostrovsky LA, Johnson PA (2001) Dynamic nonlinear elasticity of geomaterial. Rivista del Nuevo Cimento 24:1–46

    Article  Google Scholar 

  56. Nazarov VE, Ostrovsky LA, Soustova IA, Sutin A (1998) Nonlinear acoustics of micro-inhomogeneous media. Phys Earth Planet Int 50:65–73

    Article  Google Scholar 

  57. Bruneau M, Potel C, (2006) Matériaux et Acoustique 2, ch. 2. Hermès Science Publication, Lavoisier

  58. Granato AV, Luke K (1966) The vibrating string model of dislocation damping. Phys Acoust Princ Methods 4:120

    Google Scholar 

  59. Nowick AS (1950) Variation of amplitude-dependent interval friction in single crystal copper with frequency and temperature. Phys Rev 80:249–257

    Article  CAS  Google Scholar 

  60. Marec A (2008) Contrôle de santé des matériaux hétérogenes par émission acoustique et acoustique non linéaire: Discrimination des mécanismes d’endommagement et estimation de la durée de vie restante. Thèse de doctorat à l’école Doctorale de l’Université du Maine, Le Mans, p 138

    Google Scholar 

  61. Baccouche Y (2013) Caractérisation non linéaire de l’endommagement des matériaux composites par ondes guides. Université du Maine, 2013. Français. NNT: 2013. LEMA1011

  62. Lebrun GA (1996) Comportement thermomécanique et durée de vie de composites à matrice céramique: théorie et expérience, Thèse de Doctorat n° 1606, Université de Bordeaux

  63. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 12:72–79

    Article  Google Scholar 

  64. Bodros E et al (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Comput Sci Technol 67(3–4):462–470

    Article  CAS  Google Scholar 

  65. Le Duigou Antoine et al (2008) Effect of recycling on mechanical behaviour of biocompostable flax/poly (l-lactide) composites. Compos Part A 39(9):1471–1478

    Article  CAS  Google Scholar 

  66. Le Duigou A, Davies P, Baley C (2009) Etude de la liaison interfaciale fibre de lin/acide poly (l-lactique) = study of interfacial bonding of flax fibre/poly (l-lactide). JNC 16, Toulouse, France. AMAC. hal-00388871

Download references

Acknowledgements

The authors acknowledge the financial support from the General Direction of Scientific Research and Technological Development of the Ministry of Higher Education and Scientific Research of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allel Mokaddem or Bendouma Doumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyamina, B., Mokaddem, A., Doumi, B. et al. Study and modeling of thermomechanical properties of jute and Alfa fiber-reinforced polymer matrix hybrid biocomposite materials. Polym. Bull. 78, 1771–1795 (2021). https://doi.org/10.1007/s00289-020-03183-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03183-7

Keywords

Navigation