Skip to main content
Log in

Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogels are hydrophilic cross-linked polymers that can absorb water several times their weight. In this study, synthesis of hydrogel based on chitosan, acrylamide and itaconic acid is prepared via radical copolymerization studied. To study the effect of initiator concentration, time, temperature, cross-linker concentration, monomer amount and itaconic percentage on the water absorption and grafting percentage of copolymerization reaction, experimental design was performed using response surface method. The determined R2 for the quadratic models for both grafting percentage and water absorption showed values greater than 0.9, which confirm that the model is properly fitted the obtained experimental data. The optimum conditions for maximum water absorption determined by RSM are: initiator concentration 9.51 mMol/L, time 5.27 h, temperature 79.97 °C, cross-linker concentration 42.77 mMol/L and itaconic percentage 18.42%. Synthesized hydrogel is characterized using FTIR and thermogravimetric analysis and scanning electron microscopy. The results indicate the porous structure of the hydrogel; thus, this porous natural-based hydrogel can be used in variety of applications such as medical and environmental fields as a drug carrier or water treatment application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaith BS, Jindal R, Kapur GS (2013) Enzyme-based green approach for the synthesis of gum tragacanth and acrylic acid cross-linked hydrogel: its utilization in controlled fertilizer release and enhancement of water-holding capacity of soil. Iran Polym J 22(8):561–570

    Article  Google Scholar 

  2. Abd El-Rehim HA (2006) Characterization and possible agricultural application of polyacrylamide/sodium alginate crosslinked hydrogels prepared by ionizing radiation. J Appl Polym Sci 101(6):3572–3580

    Article  CAS  Google Scholar 

  3. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites: a review. Prog Polym Sci 38(8):1232–1261

    Article  CAS  Google Scholar 

  4. Sartore L, Vox G, Schettini E (2013) Preparation and performance of novel biodegradable polymeric materials based on hydrolyzed proteins for agricultural application. J Polym Environ 21(3):718–725

    Article  CAS  Google Scholar 

  5. Akhtar MF, Hanif M, Ranjha NM (2015) Methods of synthesis of hydrogels … a review. Saudi Pharm J 24(5):554–559

    Article  Google Scholar 

  6. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  7. Peniche C, Argüelles-Monal W, Peniche H, Acosta N (2003) Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci 3(10):511–520

    Article  CAS  Google Scholar 

  8. Pal P, Pandey JP, Sen G (2018) Sesbania gum based hydrogel as platform for sustained drug delivery: an ‘in vitro’ study of 5-Fu release. Int J Biol Macromol 113:1116–1124

    Article  CAS  Google Scholar 

  9. Pal P, Singh SK, Mishra S, Pandey JP, Sen G (2019) Gum ghatti based hydrogel: Microwave synthesis, characterization, 5-Fluorouracil encapsulation and ‘in vitro’ drug release evaluation. Carbohydr Polym 222:114979

    Article  CAS  Google Scholar 

  10. Eftekhari-Sis B, Rahimkhoei V, Akbari A, Araghi HY (2018) Cubic polyhedral oligomeric silsesquioxane nano-cross-linked hybrid hydrogels: synthesis, characterization, swelling and dye adsorption properties. React Funct Polym 128:47–57

    Article  CAS  Google Scholar 

  11. Azmy EAM, Hashem HE, Mohamed EA, Negm NA (2019) Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. J Mol Liq 284:748–754

    Article  CAS  Google Scholar 

  12. Kolya H, Jana D, Sasmal D, Jana S, Tripathy T (2017) Sulfated katira gum-graft-poly (N-vinyl imidazole): a useful scavenger of mercury (II) ions. J Appl Polym Sci 134(10):44565

    Article  Google Scholar 

  13. Ueoka H, Shimomura O, Ueda K, Inada K, Nomura R (2018) Release behavior of a polyanion-crosslinked chitosan-poly (N-isopropylacrylamide) gel thermoresponsive material. J Appl Polym Sci 135(41):46732

    Article  Google Scholar 

  14. Nath J, Chowdhury A, Ali I, Dolui SK (2019) Development of a gelatin-g-poly (acrylic acid-co-acrylamide)–montmorillonite superabsorbent hydrogels for in vitro controlled release of vitamin B12. J Appl Polym Sci 136(22):47596

    Article  Google Scholar 

  15. Noppakundilograt S, Choopromkaw S, Kiatkamjornwong S (2018) Hydrolyzed collagen-grafted-poly [(acrylic acid)-co-(methacrylic acid)] hydrogel for drug delivery. J Appl Polym Sci 135(1):45654

    Article  Google Scholar 

  16. Ahmed T et al (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 25(8):7287–7298

    Article  CAS  Google Scholar 

  17. Acik G (2020) Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(ε-caprolactone)s. Express Polym Lett 14(3):272–280

    Article  CAS  Google Scholar 

  18. Acik G, Karabulut HRF, Altinkok C, Karatavuk AO (2019) Synthesis and characterization of biodegradable polyurethanes made from cholic acid and L-lysine diisocyanate ethyl ester. Polym Degrad Stab 165:43–48

    Article  CAS  Google Scholar 

  19. Ma G, Yang D, Kennedy JF, Nie J (2009) Synthesize and characterization of organic-soluble acylated chitosan. Carbohydr Polym 75(3):390–394

    Article  CAS  Google Scholar 

  20. Conti F, Ferrma P, Biagid G (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9:247–252

    Article  Google Scholar 

  21. Gong S, Tu H, Zheng H, Xu H, Yin Y (2010) Chitosan-g-PAA hydrogels for colon-specific drug delivery: preparation, swelling behavior and in vitro degradability. J Wuhan Univ Technol Mater Sci Ed 25(2):248–251

    Article  CAS  Google Scholar 

  22. Dye V (2012) Synthesis of hydrogel nanocomposites of acrylamide-itaconic acid using laponite and study of crystal violet dye adsorption. Iran J Polym Sci Technol 24(6):505–514

    Google Scholar 

  23. Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68(2):367–374

    Article  CAS  Google Scholar 

  24. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66(2):229–245

    Article  CAS  Google Scholar 

  25. Işiklan N, Inal M, Kurşun F, Ercan G (2011) PH responsive itaconic acid grafted alginate microspheres for the controlled release of nifedipine. Carbohydr Polym 84(3):933–943

    Article  Google Scholar 

  26. Şen M, Yakar A (2001) Controlled release of antifungal drug terbinafine hydrochloride from poly (N-vinyl 2-pyrrolidone/itaconic acid) hydrogels. Int J Pharm 228(1):33–41

    Article  Google Scholar 

  27. Bajpai M, Bajpai SK, Jyotishi P (2016) Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films. Int J Biol Macromol 84:1–9

    Article  CAS  Google Scholar 

  28. Bocourt M, Bada N, Acosta N (2014) Synthesis and characterization of novel pH-sensitive chitosan-poly (acrylamide-co-itaconic acid) hydrogels. Polym Int 63:1715–1723

    Article  CAS  Google Scholar 

  29. Lazic ZR (2004) Design of experiments in chemical engineering. Wiley, Hoboken

    Book  Google Scholar 

  30. Montgomery DC (2008) Design and analysis of experiments. Wiley, Hoboken

    Google Scholar 

  31. Lagos A, Reyes J, Organica DDQ (1988) Grafting onto chitosan. I: Graft copolymerization of methyl methacrylate onto chitosan with Fenton’s reagent as a redox initiator. J Polym Sci A Polym Chem 26:985–991

    Article  CAS  Google Scholar 

  32. Rani P, Pal P, Panday JP, Mishra S, Sen G (2019) Alginic acid derivatives: synthesis, characterization and application in wastewater treatment. J Polym Environ 27(12):2769–2783

    Article  CAS  Google Scholar 

  33. Işiklan N, Kurşun F, Inal M, Işıklan N, Kurşun F, İnal M (2010) Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr Polym 79(3):665–672

    Article  Google Scholar 

  34. Kiatkamjornwong S, Mongkolsawat K, Sonsuk M (2002) Synthesis and property characterization of cassava starch grafted poly [acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation. Polymer (Guildf) 43(14):3915–3924

    Article  CAS  Google Scholar 

  35. ​Glass JE (2000) Water‐soluble polymers. In: Kirk‐Othmer (ed) Kirk‐Othmer encyclopedia of chemical technology. https://doi.org/10.1002/0471238961.2301200507120119.a01

  36. Pal P, Pandey JP, Sen G (2017) Modified PVP based hydrogel: synthesis, characterization and application in selective abstraction of metal ions from water. Mater Chem Phys 194:261–273

    Article  CAS  Google Scholar 

  37. Kumbar SG, Soppimath KS, Aminabhavi TM (2003) Synthesis and characterization of polyacrylamide-grafted chitosan hydrogel microspheres for the controlled release of indomethacin. J Appl Polym Sci 87(9):1525–1536

    Article  CAS  Google Scholar 

  38. Shanmugasundaram N, Ravichandran P, Neelakanta Reddy P, Ramamurty N, Pal S, Panduranga Rao K (2001) Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 22(14):1943–1951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran, supported this research financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hashemipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dan, S., Banivaheb, S., Hashemipour, H. et al. Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel. Polym. Bull. 78, 1887–1907 (2021). https://doi.org/10.1007/s00289-020-03190-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03190-8

Keywords

Navigation