Skip to main content
Log in

Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Pectin is a type of anionic polysaccharide naturally found in a number of fruits and vegetables. Although pectin is widely used for food industry, its biomedical applications such as wound dressing, drug delivery and cancer targeting have also been investigated. In our study, we combined extracted pectin (from albedo of lemon peels) with chitosan (as a natural polymer) to synthesize chitosan/pectin cryogels. The extracted pectin was subjected to qualitative and quantitative analyses. Chitosan/pectin spongy supermacroporous cryogels were produced by cryogelation method at different combinations (100:0, 80:20, 60:40 and 40:60, w/w). Polyelectrolyte interactions between pectin and chitosan and crosslinking of chitosan with glutaraldehyde were verified by using FTIR. The porosity, swelling ratio, degradation behaviors and mechanical properties of cryogels were determined. SEM analysis demonstrated the pore morphology and average pore diameters of cryogels. After all analysis, 40:60 chitosan/pectin cryogel was selected for cytotoxicity studies. Glioblastoma (U-87 MG) cell line was used to evaluate the in vitro cytotoxicity of scaffolds. MTT assay and SEM analyses demonstrated the scaffolds were nontoxic, and supported cell attachment and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Erisken C, Zhang X, Moffat KL et al (2013) Scaffold fiber diameter regulates human tendon fibroblast growth and differentiation. Tissue Eng Part A 19:519–528. https://doi.org/10.1089/ten.tea.2012.0072

    Article  CAS  PubMed  Google Scholar 

  2. Choudhury M, Mohanty S, Nayak S (2015) Effect of different solvents in solvent casting of porous PLA scaffolds—in biomedical and tissue engineering applications. J Biomater Tissue Eng 5:1–9

    Article  Google Scholar 

  3. Wong BS, Teoh SH, Kang L (2012) Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Deliv Transl Res 2:272–283. https://doi.org/10.1007/s13346-012-0096-9

    Article  CAS  PubMed  Google Scholar 

  4. Zhang D, Duan J, Wang D, Ge S (2010) Effect of preparation methods on mechanical properties of PVA/HA composite hydrogel. J Bionic Eng 7:235–243. https://doi.org/10.1016/S1672-6529(10)60246-6

    Article  Google Scholar 

  5. Salgado AJ, Coutinho OP, Reis RL (2004) Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. Tissue Eng 10:465–474. https://doi.org/10.1089/107632704323061825

    Article  CAS  PubMed  Google Scholar 

  6. Rodrigues SC, Salgado CL, Sahu A et al (2013) Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. J Biomed Mater Res—Part A 101:1080–1094. https://doi.org/10.1002/jbm.a.34394

    Article  CAS  Google Scholar 

  7. Kemençe N, Bölgen N (2017) Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility. J Tissue Eng Regen Med 11:20–33. https://doi.org/10.1002/term.1813

    Article  CAS  PubMed  Google Scholar 

  8. Ceylan S, Göktürk D, Bölgen N (2016) Effect of crosslinking methods on the structure and biocompatibility of polyvinyl alcohol/gelatin cryogels. Biomed Mater Eng 27:327–340

    CAS  PubMed  Google Scholar 

  9. Kumar A (2016) Supermacroporous cryogels biomedical and biotechnological applications. CRC Press, Boca Raton

    Book  Google Scholar 

  10. Tangsadthakun C, Kanokpanont S, Sanchavanakit N et al (2017) Properties of collagen/chitosan scaffolds for skin tissue engineering. J Met Mater Miner 16:37–44

    Google Scholar 

  11. Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Memb Sci 236:39–51. https://doi.org/10.1016/j.memsci.2004.02.005

    Article  CAS  Google Scholar 

  12. Lin HY, Chen HH, Chang SH, Ni TS (2013) Pectin–chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold. J Biomater Sci Polym Ed 24:470–484. https://doi.org/10.1080/09205063.2012.693047

    Article  CAS  PubMed  Google Scholar 

  13. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2:204–226. https://doi.org/10.1002/cben.201400025

    Article  Google Scholar 

  14. Coimbra P, Ferreira P, de Sousa HC et al (2011) Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int J Biol Macromol 48:112–118. https://doi.org/10.1016/j.ijbiomac.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  15. Türkkan S, Atila D, Akdağ A, Tezcaner A (2018) Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering. J Biomed Mater Res—Part B Appl Biomater. https://doi.org/10.1002/jbm.b.34079

    Article  Google Scholar 

  16. Wang M, Li J, Li W et al (2018) Preparation and characterization of novel poly (vinyl alcohol)/collagen double-network hydrogels. Int J Biol Macromol 118:41–48. https://doi.org/10.1016/j.ijbiomac.2018.05.200

    Article  CAS  PubMed  Google Scholar 

  17. Woo K, Chong YY, Li Hiong SK, Tang PY (2010) Pectin extraction and characterization from red dragon fruit (Hylocerus polyrhyzuz): a preliminary study. J Biol Sci 10:631–636

    Article  Google Scholar 

  18. Singthong J, Cui SW, Ningsanond S, Douglas Goff H (2004) Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydr Polym 58:391–400. https://doi.org/10.1016/j.carbpol.2004.07.018

    Article  CAS  Google Scholar 

  19. Smita Mohanty MC (2015) Effect of different solvents in solvent casting of Porous scaffolds—in biomedical and tissue engineering applications. J Tissue Sci Eng 06:1–7. https://doi.org/10.4172/2157-7552.1000142

    Article  CAS  Google Scholar 

  20. Kozłowska J, Sionkowska A (2015) Effects of different crosslinking methods on the properties of collagen–calcium phosphate composite materials. Int J Biol Macromol 74:397–403

    Article  PubMed  Google Scholar 

  21. Ma L, Gao C, Mao Z et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841. https://doi.org/10.1016/S0142-9612(03)00374-0

    Article  CAS  PubMed  Google Scholar 

  22. Ceylan S, Göktürk D, Demir D et al (2017) Comparison of additive effects on the PVA/starch cryogels: synthesis, characterization, cytotoxicity, and genotoxicity studies. Int J Polym Mater Polym Biomater 67:855–864

    Article  Google Scholar 

  23. Syverud K, Pettersen SR, Draget K, Chinga-Carrasco G (2015) Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering. Cellulose 22:473–481. https://doi.org/10.1007/s10570-014-0470-5

    Article  CAS  Google Scholar 

  24. Karimi Z, Ghorbani M, Hashemibeni B, Bahramian H (2015) Evaluation of the proliferation and viability rates of nucleus pulposus cells of human intervertebral disk in fabricated chitosan–gelatin scaffolds by freeze drying and freeze gelation methods. Adv Biomed Res 4:251. https://doi.org/10.4103/2277-9175.170676

    Article  PubMed  PubMed Central  Google Scholar 

  25. Salam MA, Jahan N, Islam MA, Hoque MM (2012) Extraction of Pectin from lemon peel: technology development. J Chem Eng IEB ChE 27:25–30

    Google Scholar 

  26. Kanmani P (2014) Extraction and analysis of pectin from citrus peels: augmenting the yield from citrus limon using statistical experimental design. Iran J Energy Environ 5:303–312. https://doi.org/10.5829/idosi.ijee.2014.05.03.10

    Article  Google Scholar 

  27. Archana D, Upadhyay L, Tewari RP et al (2013) Chitosan–pectin–alginate as a novel scaffold for tissue engineering applications. Indian J Biotechnol 12:475–482

    CAS  Google Scholar 

  28. Zaidel DNA, Zainudin NN, Jusoh YMM, Muhamad II (2015) Extraction and characterisation of pectin from sweet potato (Ipomoea batatas) pulp. J Eng Sci Technol 10:22–29

    Google Scholar 

  29. Ciriminna R, Fidalgo A, Delisi R et al (2017) Controlling the degree of esterification of citrus pectin for demanding applications by selection of the source. ACS Omega 2:7991–7995. https://doi.org/10.1021/acsomega.7b01109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R et al (2018) Pectin and pectin-based composite materials: beyond food texture. Molecules. https://doi.org/10.3390/molecules23040942

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kusumastuti Y, Petrus HTBM, Yohana F et al (2017) Synthesis and characterization of biocomposites based on chitosan and geothermal silica. AIP Conf Proc. https://doi.org/10.1063/1.4978200

    Article  Google Scholar 

  32. Rashidova SS, Milusheva RY, Semenova LN et al (2004) Characteristics of Interactions in the pectin-chitosan System. Chromatographia 59:779–782. https://doi.org/10.1365/s10337-004-0289-6

    Article  CAS  Google Scholar 

  33. Maciel VBV, Yoshida CMP, Franco TT (2015) Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr Polym 132:537–545. https://doi.org/10.1016/j.carbpol.2015.06.047

    Article  CAS  PubMed  Google Scholar 

  34. Wang H (2017) Pectin–chitosan polyelectrolyte complex nanoparticles for encapsulation and controlled release of nisin. Am J Polym Sci Technol 3:82. https://doi.org/10.11648/j.ajpst.20170305.11

    Article  Google Scholar 

  35. Wang H, Sun H, He J (2018) Formation of polyelectrolyte complex colloid particles between chitosan and pectin with different degree of esterification. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/275/1/012012

    Article  Google Scholar 

  36. Li B, Shan CL, Zhou Q et al (2013) Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs 11:1534–1552. https://doi.org/10.3390/md11051534

    Article  PubMed  PubMed Central  Google Scholar 

  37. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Farshi Azhar F, Olad A, Salehi R (2014) Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Des Monomers Polym 17:654–667. https://doi.org/10.1080/15685551.2014.907621

    Article  CAS  Google Scholar 

  39. Demir D, Ceylan S, Faculty E, Science A (2017) Eggshell derived nanohydroxyapatite reinforced chitosan cryogel biocomposites for tissue engineering applications. J Turkish Chem Soc 1:77–88

    CAS  Google Scholar 

  40. Chhabra P, Tyagi P, Bhatnagar A et al (2016) Optimization, characterization, and efficacy evaluation of 2% chitosan scaffold for tissue engineering and wound healing. J Pharm Bioallied Sci 8:300. https://doi.org/10.4103/0975-7406.199346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heljak MK, Swieszkowski W, Kurzydlowski KJ (2014) Modeling of the degradation kinetics of biodegradable scaffolds: the effects of the environmental conditions. J Appl Polym Sci 131:1–7. https://doi.org/10.1002/app.40280

    Article  CAS  Google Scholar 

  42. Sung HJ, Meredith C, Johnson C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25:5735–5742. https://doi.org/10.1016/j.biomaterials.2004.01.066

    Article  CAS  PubMed  Google Scholar 

  43. Chen PH, Kuo TY, Kuo JY et al (2010) Novel chitosan–pectin composite membranes with enhanced strength, hydrophilicity and controllable disintegration. Carbohydr Polym 82:1236–1242. https://doi.org/10.1016/j.carbpol.2010.06.057

    Article  CAS  Google Scholar 

  44. Martins JG, de Oliveira AC, Garcia PS et al (2018) Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties. Carbohydr Polym 188:136–142. https://doi.org/10.1016/j.carbpol.2018.01.112

    Article  CAS  PubMed  Google Scholar 

  45. Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55–62. https://doi.org/10.1016/j.jbiomech.2009.09.009

    Article  PubMed  Google Scholar 

  46. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. https://doi.org/10.1126/science.1116995

    Article  CAS  PubMed  Google Scholar 

  47. Konovalova MV, Markov PA, Popova GY et al (2017) Prevention of postoperative adhesions by biodegradable cryogels from pectin and chitosan polysaccharides. J Bioact Compat Polym 32:487–502. https://doi.org/10.1177/0883911517690758

    Article  CAS  Google Scholar 

  48. Kulikouskaya VI, Paribok IV, Pinchuk SV et al (2018) Polydimethylsiloxane films modified with chitosan/pectin multilayers as scaffolds for mesenchymal stem cells. Appl Biochem Microbiol 54:468–473. https://doi.org/10.1134/S0003683818050101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimet Bölgen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, D., Ceylan, S., Göktürk, D. et al. Extraction of pectin from albedo of lemon peels for preparation of tissue engineering scaffolds. Polym. Bull. 78, 2211–2226 (2021). https://doi.org/10.1007/s00289-020-03208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03208-1

Keywords

Navigation