Skip to main content
Log in

Synthesis of polyaniline/clay nanocomposites by in situ polymerization and its application for the removal of Acid Green 25 dye from wastewater

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthesis, characterization and adsorption studies of polyaniline (PANI) and polyaniline/montmorillonite clay (PANI/MMT) nanocomposites have been carried out. In situ polymerization method was used to synthesize PANI/MMT nanocomposites using HCl as a catalyst and ammonium persulfate as an oxidizing agent. The molar ratio of monomer/oxidant was 1:1, and the polymerization was done at two different temperatures, i.e.,. 0° and 20 °C. Complete removal of Acid Green 25 (AG25) dye was achieved with PANI/MMT adsorbent. The kinetic adsorption data of AG25 dye were found to fit pseudo-second-order kinetic model. Since the removal of this dye takes place efficiently at a very fast rate, PANI/MMT nanocomposites will be excellent adsorbents in continuous adsorption systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Koswojo R, Utomo RP, Ju YH, Ayucitra A, Soetaredjo FE, Sunarso J, Ismadji S (2010) Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Appl Clay Sci 48:81–86

    CAS  Google Scholar 

  2. Salahuddin NA, Ayad MM, Essa ME (2015) Modified chitosan for efficient dye adsorption in low acid media. Int J Mater Chem 5(3):54–63. https://doi.org/10.5923/j.ijmc.20150503.02

    Article  CAS  Google Scholar 

  3. Ayad MM, El-Nasr AA (2012) Anionic dye (acid green 25) adsorption from water by using polyaniline nanotubes salt/silica composite. J Nanostructure Chem 3:3

    Google Scholar 

  4. Ansari R, Alaei S, Mohammad-khah A (2011) Application of polyaniline for removal of acid green 25 from aqueous solution. J Sci Ind Res 70(9):804–809

    CAS  Google Scholar 

  5. Khan MI, Ansari TM, Zafar S, Buzdar AR, Khan MA, Mumtaz F, Prapamonthon P, Akhtar M (2018) Acid Green-25 removal from wastewater by anion exchange membrane: adsorption kinetic and thermodynamic studies. Membr Water Treat 9(2):79–85

    Google Scholar 

  6. Lee SY, Shim HE, Yang JE, Choi YJ, Jeon J (2019) Continuous flow removal of anionic dyes in water by chitosan-functionalized iron oxide nanoparticles incorporated in a dextran gel column. Nanometer 9:1164. https://doi.org/10.3390/nano9081164

    Article  CAS  Google Scholar 

  7. Kaykhaii M, Sasani M, Marghzari S (2018) Removal of Dyes from the environment by adsorption process. Chem Mater Eng 6(2):31–35. https://doi.org/10.13189/cme.2018.060201

    Article  CAS  Google Scholar 

  8. Jain SN, Gogate PR (2018) Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: batch and column studies. J Environ Manag 210:226–238

    CAS  Google Scholar 

  9. Mahmoodi NM, Taghizadeh M, Taghizadeh A (2019) Activated carbon/metal-organic framework composite as a bio-based novel green adsorbent: preparation and mathematical pollutant removal modeling. J Mol Liq 277:310–322

    CAS  Google Scholar 

  10. Cottet L, Almeida CAP, Naidek N, Viante MF, Lopes MC, Debacher NA (2014) Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Appl Clay Sci 95:25–31

    CAS  Google Scholar 

  11. Yap PW, Priyaa V (2019) Removal of crystal violet and acid green 25 from water using kaolin. Mater Sci Eng 495:012052. https://doi.org/10.1088/1757-899X/495/1/012052

    Article  CAS  Google Scholar 

  12. Unuabonah EI, Taubert A (2014) Clay–polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Appl Clay Sci 99:83–92

    CAS  Google Scholar 

  13. Olad A, Rashidzadeh A (2012) Poly(N-vinylpyrrolidone) modified polyaniline/Na+ -cloisite nanocomposite: synthesis and characterization. Fiber Polym 13:16–20

    CAS  Google Scholar 

  14. Mahanta D, Madras G, Radhakrishnan S, Patil S (2008) Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics. J Phys Chem 112:10153–10157

    CAS  Google Scholar 

  15. Souza FG, Sirelli L, Michel RC, Soares BG, Herbst MH (2006) In situ polymerization of aniline in the presence of carbon black. J Appl Polym Sci 102:535–541

    CAS  Google Scholar 

  16. Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33:732–758

    CAS  Google Scholar 

  17. Baei MS, Babaee V, Pirouz F (2011) Preparation of polyaniline nanocomposites for removal of sulfate from wastewater. In: 2nd International conference on chemistry and chemical engineering vol 14, p 95

  18. Chowdhury AN, Jesmeen SR, Hossain MM (2004) Removal of dyes from water by conducting polymeric adsorbent. Polym Adv Technol 15:633–638

    CAS  Google Scholar 

  19. Chen CH (2003) Thermal and morphological studies of chemically prepared emeraldine-base-form polyaniline powder. J Appl Polym Sci 89:2142–2148

    CAS  Google Scholar 

  20. Zahran M, Saleeb MM, Elhalawany N (2019) Electrical and dielectrical properties of some novel polyaniline nanocomposites. Egypt J Chem 62(11):1987–1994

    Google Scholar 

  21. Salem MA (2010) The role of polyaniline salts in the removal of direct blue 78 from aqueous solution: a kinetic study. React Funct Polym 70:707–714

    CAS  Google Scholar 

  22. Elsayed AH, Mohy Eldin MS, Elsyed AM, Abo Elazm AH, Younes EM, Motaweh HA (2011) Synthesis and properties of polyaniline/ferrites nanocomposites. Int J Electrochem Sci 6:206–221

    CAS  Google Scholar 

  23. Boddula R, Srinivasan P (2014) Emeraldine Base form of polyaniline nanofibers as new, economical, green, and efficient catalyst for synthesis of Z-Aldoximes. J Catal. https://doi.org/10.1155/2014/515428

    Article  Google Scholar 

  24. Yeh JM, Liou SJ, Lai CY, Wu PC (2001) Enhancement of corrosion protection effect in polyaniline via the formation of polyaniline-clay nanocomposite Materials. Chem Mater 13:1131–1136

    CAS  Google Scholar 

  25. Stejskal J, Gilbert RG (2002) Polyaniline, preparation of a conducting polymer. Pure Appl Chem 74:857–867

    CAS  Google Scholar 

  26. Palaniappan S, John A, Amarnath CA, Rao VJ (2004) Mannich-type reaction in solvent free condition using reusable polyaniline catalyst. J Mol Catal A: Chem 218:47–53

    CAS  Google Scholar 

  27. Ramamurthy PC, Harrell WR, Gregory RV, Sadanadan B, Rao AM (2004) mechanical and electrical properties of solution-processed polyaniline multiwalled carbon nanotube composite films. J Electrochem Soc 151:502–506

    Google Scholar 

  28. Acevedo DF, Salavagione HJ, Miras MC, Barbero CA (2005) Synthesis, properties and aplications of functionalized polyanilines. J Braz Chem Soc. https://doi.org/10.1590/S010350532005000200020

    Article  Google Scholar 

  29. Ansari R (2006) Application of polyaniline and its composites for adsorption/recovery of chromium (VI) from aqueous solutions. Acta Chim Slov 53(1):88–94

    CAS  Google Scholar 

  30. Chang KC, Jang GW, Peng CW, Lin CY, Shieh JC, Yeh JM, Yang JC, Li WT (2007) Comparatively electrochemical studies at different operational temperatures for the effect of nanoclay platelets on the anticorrosion efficiency of DBSA-doped polyaniline/Na+–MMT clay nanocomposite coatings. Electrochim Acta 52:5191–5200

    CAS  Google Scholar 

  31. Simoes FR, Bulhoes LOS, Pereira EC (2009) Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability. Polimeros 19:54–57

    CAS  Google Scholar 

  32. Babazadeh M (2009) Aqueous dispersions of DBSA-doped polyaniline: one-pot preparation, characterization, and properties study. J Appl Polym Sci 113:3980–3984

    CAS  Google Scholar 

  33. Chauhan NPS, Ameta R, Ameta R, Ameta SC (2011) Thermal and conducting behaviour of emeraldine base (EB) form of polyaniline (PANI). Indian J Chem Technol 18(2):118–122

    CAS  Google Scholar 

  34. Pande S, Swaruparani H, Bedre MD, Bhat R, Deshpande R, Venkataraman A (2012) Synthesis, characterization and studies of PANI–MMT nanocompoisites. Nanosci Nanotechnol 2:90–98

    Google Scholar 

  35. Kavitha B, Siva Kumar K, Narsimlu N (2013) Synthesis and characterization of polyaniline nano-fibers. Indian J Pure Ap Phy 51(3):207–209

    CAS  Google Scholar 

  36. Wasu MB, Raut AR (2014) Synthesis and characterization of polyaniline based conducting polymers. J Chem Cheml Sci 4(2):90–97

    Google Scholar 

  37. Sharma D, Kaith BS, Rajput J (2014) Single step in situ synthesis and optical properties of polyaniline/ZnO nanocomposites. Sci World J. https://doi.org/10.1155/2014/904513

    Article  Google Scholar 

  38. Sangamesha MA, Pushpalatha K, Shekar GL (2014) Synthesis and characterization of conducting polyaniline/copper selenide nanocomposites. Indian J Adv Chem Sci 2(3):223–227

    CAS  Google Scholar 

  39. Najim TS, Salim AJ (2017) Polyaniline nanofibers and nanocomposites: Preparation, characterization, and application for Cr(VI) and phosphate ions removal from aqueous solution. Arab J Chem 10:S3459–S3467. https://doi.org/10.1016/j.arabjc.2014.02.008

    Article  CAS  Google Scholar 

  40. Bavio MA, Acosta GG, Kessler T (2014) Polyaniline and polyaniline-carbon black nanostructures as electrochemical capacitor electrode materials. Int J Hydrog Energy 39:8582–8589

    CAS  Google Scholar 

  41. Kim BH, Jung JH, Hong SH, Joo J (2002) Nanocomposite of polyaniline and Na+-montmorillonite clay. Macromolecules 35:1419–1423

    CAS  Google Scholar 

  42. Nascimento GM, Constantino VRL, Landers R, Temperini MLA (2004) Aniline polymerization into montmorillonite clay: a spectroscopic investigation of the intercalated conducting polymer. Macromolecules 37:9373–9385

    Google Scholar 

  43. Nascimento GM, Constantino VRL, Landers R, Temperini MLA (2006) Spectroscopic characterization of polyaniline formed in the presence of montmorillonite clay. Polymer 47:6131–6139

    Google Scholar 

  44. Binitha NN, Sugunan S (2008) Polyaniline/pillared montmorillonite clay composite nanofibers. J Appl Polym Sci 107:3367–3372

    CAS  Google Scholar 

  45. Kalaivasan N, Shafi SS (2010) Synthesis of various polyaniline / clay nanocomposites derived from aniline and substituted aniline derivatives by mechanochemical intercalation method. E-J Chem 7(4):1477–1483

    CAS  Google Scholar 

  46. Narayanan BN, Koodathil R, Gangadharan T, Yaakob Z, Saidu FK, Chandralayam S (2010) Preparation and characterization of exfoliated polyaniline/montmorillonite nanocomposites. Mater Sci Eng B 168:242–244

    CAS  Google Scholar 

  47. Srivastava N, Singh Y, Singh RA (2011) Preparation of intercalated polyaniline/clay nanocomposite and its exfoliation exhibiting dendritic structure. Bull Mater Sci 34:635–638

    CAS  Google Scholar 

  48. Binitha N, Suraja V, Yaakob Z, Sugunan S (2011) Synthesis of polyaniline-montmorillonite nanocomposites using H2O2 as the oxidant. Sains Malays 40(3):215–219

    CAS  Google Scholar 

  49. Kazim S, Ahmad S, Pfleger J, Plestil J, Joshi YM (2011) Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J Mater Sci 47:420–428

    Google Scholar 

  50. Baldissera AF, Souza JF, Ferreira CA (2013) Synthesis of polyaniline/clay conducting nanocomposites. Synth Met 183:69–72

    CAS  Google Scholar 

  51. Deng S, Guang Li G (2013) structural features and microwave absorbing properties of polyaniline-montmorillonite composites prepared by in-situ. J Fiber Bioeng Informat 6(1):33–40

    Google Scholar 

  52. Abd El-Ghaffar MA, Youssef AM, Abd El-Hakim AA (2015) Polyaniline nanocomposites via in situ emulsion polymerization based on montmorillonite: preparation and characterization. Arab J Chem 8(6):771–779. https://doi.org/10.1016/j.arabjc.2014.01.001

    Article  CAS  Google Scholar 

  53. Nguyen VH, Shim JJ (2015) Green synthesis and characterization of carbon nanotubes/polyaniline nanocomposites. J Spectrosc. https://doi.org/10.1155/2015/297804

    Article  Google Scholar 

  54. Leon-Almazan CMD, Estrada-Moreno IA, Páramo-García U, Rivera-Armenta JL (2018) Polyaniline/clay nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synth Met 236:61–67

    Google Scholar 

  55. Yamabe K, Goto H (2018) Synthesis and surface observation of montmorillonite/polyaniline composites. J Compos Sci 2:15. https://doi.org/10.3390/jcs2010015

    Article  CAS  Google Scholar 

  56. Hattab Y, Benharrats N (2019) Electrical and thermal properties of PANI–Mmt nanocomposites in strongly acidic aqueous media. SN Appl Sci 1:750. https://doi.org/10.1007/s42452-019-0703-1

    Article  CAS  Google Scholar 

  57. Nigam V, Lal G (2008) Review on recent trends in polymer layered clay nanocomposites. Proc Indian Natn Sci Acad 74(2):87–96

    CAS  Google Scholar 

  58. Benhebal H, Chaib M, Leonard AL, Crine M, Lambert SD (2014) Preparation of polyaniline-modified local clay and study of its sorption capacity. J Nanost Chem 4:98

    Google Scholar 

  59. Qureshi UA, Gubbuk IH, Ersoz M, Solangi AR, Taqvi SIH, Memon SQ (2016) Preparation of polyaniline montmorillonite clay composites for the removal of diethyl hexyl phthalate from aqueous solutions. Sep Sci Technol 51(2):214–228

    CAS  Google Scholar 

  60. Ramedani A, Yazdanpanah A, Abrishamkar A, Nasrollahi M, Milan PB, Moghadam ZS, Chauhan NPS, Sefat F, Mozafari M (2019) Advanced characterization tools for PANI and PANI-clay nanocomposites. Fundam Emerg Appl Polyaniline. https://doi.org/10.1016/B978-0-12-817915-4.00012-9

    Article  Google Scholar 

  61. Buruga K, Song H, Shang J, Bolan N, Kalathi JT, Kim K-H (2019) A review on functional polymer-clay based nanocomposite membranes for treatment of water. J Hazard Mater 379:120584. https://doi.org/10.1016/j.jhazmat.2019.04.067

    Article  CAS  PubMed  Google Scholar 

  62. Zeggai FZ, Belbachir M, Hachemao A (2017) In-situ preparation of conducting polymers/copper (II)-maghnite clay nanocomposites. Mat Sci Res India 14(2):204–211

    CAS  Google Scholar 

  63. Banimahd Keivani M, Zare K, Aghaie H, Ansari R (2009) Removal of methylene blue dye by application of polyaniline nano composite from aqueous solutions. J Phys Theor Chem 6(1):50–56

    Google Scholar 

  64. Rahimi R, Kerdari H, Rabbania M (2014) Adsorptive removal of crystal violet (CV), a carcinogenic textile dye, from aqueous. In: 14th International electronic conference on synthetic organic chemistry ECSOC-14

  65. Ansari R, Mosayebzadeh Z (2011) Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chem Pap 65(1):1–8

    CAS  Google Scholar 

  66. Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy AK, Kannan SK (2012) Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr Polym 90:1437–1444

    CAS  PubMed  Google Scholar 

  67. Baseri JR, Palanisamy PN, Sivakumar P (2012) Application of polyaniline nano composite for the adsorption of acid dye from aqueous solutions. J Chem 9(3):1266–1275

    Google Scholar 

  68. Ansari R, Dezhampanah H (2013) Application of polyaniline /sawdust composite for removal of acid green 25 from aqueous solutions: kinetics and thermodynamic studies. Eur Chem Bull 2(4):220–225. https://doi.org/10.17628/ecb.2013.2.220-225

    Article  CAS  Google Scholar 

  69. Karthikaikumar S, Karthikeyan M, Satheesh Kumar KK (2014) Removal of congo red dye from aqueous solution by polyaniline- montmorillonite composite. Chem Sci Rev Lett 2(8):606–614

    Google Scholar 

  70. Olad A, Azhar FF (2014) Eco-friendly biopolymer/clay/conducting polymer nanocomposite: characterization and its application in reactive dye removal. Fiber Polym 15:1321–1329

    CAS  Google Scholar 

  71. Shahabuddin S, Sarih NM, Kamboh MA, Nodeh HR, Mohamad S (2016) Synthesis of polyaniline-coated graphene Oxide@SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers 8(9):305

    PubMed Central  Google Scholar 

  72. Khairy M, Kamal R, Amin NH, Mousa MA (2016) Kinetics and isotherm studies of Remazol Red adsorption onto polyaniline/ cerium oxide nanocomposites. J Bas Environ Sci 3:123–132

    Google Scholar 

  73. Gemeay AH, Elsharkawy RB, Aboelfetoh EF (2018) Graphene oxide/polyaniline/manganese oxide ternary nanocomposites, facile synthesis, characterization, and application for indigo carmine removal. J Polym Environ 26:655–669

    CAS  Google Scholar 

  74. Soltani H, Belmokhtar A, Zeggal FZ, Benyoucef A, Bousalem S, Bachari K (2019) Copper(II) removal from aqueous solutions by PANI-clay hybrid material: fabrication, characterization, adsorption and kinetics study. J Inorg Organomet Polym Mater 29:841–850

    CAS  Google Scholar 

  75. Zehhaf A, Morallon E, Benyoucef A (2013) Polyaniline/montmorillonite nanocomposites obtained by in situ intercalation and oxidative polymerization in cationic modified-clay (sodium, copper and iron). J Inorg Organomet Polym Mater 23:1485–1491

    CAS  Google Scholar 

  76. HambateGomdje V, Rahman AN, Wahabou A, BenoitLoura, Chtaini A (2017) Synthesis of organoclay and its applications in electrochemical detection of paracetamol. Der Chem Sin 8(1):206–217

    Google Scholar 

  77. Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A 64:273–278

    Google Scholar 

  78. Gomes EC, Oliveira MAS (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am J Polym Sci 2:5–13

    Google Scholar 

  79. Cole KC (2008) Use of infrared spectroscopy to characterize clay intercalation and exfoliation in polymer nanocomposites. Macromolecules 41:834–843

    CAS  Google Scholar 

  80. Qiu M, Zhang Y, Wen B (2018) Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance. J Mater Sci-Mater El 29:10437–10444

    CAS  Google Scholar 

  81. Nadaf LI, Venkatesh KS (2015) Polyaniline-copper oxide nano-composites: Synthesis and characterization. Mat Sci Res India 12(2):108–111. https://doi.org/10.13005/msri/120204

    Article  Google Scholar 

  82. Sui X, Chu Y, Xing S, Liu C (2004) Synthesis of PANI/AgCl, PANI/BaSO4 and PANI/TiO2 nanocomposites in CTAB/hexanol/water reverse micelle. Mater Lett 58:1255–1259

    CAS  Google Scholar 

  83. Vivekanandan J, Ponnusamy V, Mahudeswaran A, Vijayanand PS (2011) Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Arch Appl Sci Res 3(6):147–153

    CAS  Google Scholar 

  84. Jayasudha S, Priya L, Vasudevan KT (2014) Preparation and characterization of Polyaniline/Ag nanocomposites. Int J Chem Tech Res 6(3):1821–1823

    CAS  Google Scholar 

  85. Yoshimoto S, Ohashi F, Kameyama T (2005) Characterization and thermal degradation studies on polyaniline-intercalated montmorillonite nanocomposites prepared by a solvent-free mechanochemical route. J Polym Sci B 43:2705–2714

    CAS  Google Scholar 

  86. Sun F, Pan Y, Wang J, Wang Z, Hu C, Dong Q (2009) Synthesis of conducting polyaniline-montmorillonite nanocomposites via inverse emulsion polymerization in supercritical carbon dioxide. Polym Compos 31:163. https://doi.org/10.1002/pc.20783

    Article  CAS  Google Scholar 

  87. Salem MA, Elsharkawy RG, Hablas MF (2016) Adsorption of brilliant green dye by polyaniline/silver nanocomposite: kinetic, equilibrium, and thermodynamic studies. Eur Polym J 75:577–590. https://doi.org/10.1016/j.eurpolymj.2015.12.027

    Article  CAS  Google Scholar 

  88. Sobhanardakani S, Zandipak R (2015) Removal of anionic dyes (Direct Blue 106 and Acid Green 25) from aqueous solutions using oxidized multi-walled carbon nanotubes. Iran J Health Sci 3(3):48–57

    Google Scholar 

  89. Inthapanya X, Wu S, Han Z, Zeng G, Wu M, Yang C (2019) Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics. Environ Sci Pollut Res 6:5944–5954

    Google Scholar 

  90. Youssef AM, Ahmed AI, El-Bana UA (2012) Adsorption of cationic dye (MB) and anionic dye (AG 25) by physically and chemically activated carbons developed from rice husk. Carbon Lett 13(2):61–72

    Google Scholar 

  91. Parimalam R, Raj V, Sivakumar P (2012) Removal of acid green 25 from aqueous solution by adsorption. E-J Chem 9:1683–1698

    CAS  Google Scholar 

  92. Salahuddin NA, Ayad MM, Essa ME (2015) Modified chitosan for efficient dye adsorption in low acid media. J Mater Chem 5(3):54–63. https://doi.org/10.5923/j.ijmc.20150503.02

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from UGC (Rajiv Gandhi National Fellowship). We are also thankful to Prof S. N. Upadhyay, Emeritus Professor, Department of Chemical Engineering and Technology, IIT (BHU), for his valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Mehta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalotra, S., Mehta, R. Synthesis of polyaniline/clay nanocomposites by in situ polymerization and its application for the removal of Acid Green 25 dye from wastewater. Polym. Bull. 78, 2439–2463 (2021). https://doi.org/10.1007/s00289-020-03222-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03222-3

Keywords

Navigation