Skip to main content

Advertisement

Log in

Polyaniline-TiO2-based photocatalysts for dyes degradation

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

For the last few decades, photocatalysis has attracted as an emerging successful technology for purifying wastewater by dye degradation from households and industries. TiO2-based photocatalysis has gained wide attention due to its importance in energy source as well as its outstanding involvement in the reduction in environmental problems. Consequently, researchers and scientists are looking for the synthesis of polyaniline-TiO2-based photocatalysts which are widely being used for the degradation of dyes. Lately, the use of polyaniline as photosensitizers has proved that it immensely enhances photodegradation by its excellent photocatalytic activity under both ultraviolet light and natural sunlight irradiation. Considering this most unique performance of Polyaniline-TiO2-based photocatalysis, the present review provides the recent advances and trends in the development of ultraviolet and visible light-responsive polyaniline-TiO2-based photocatalysis for their potential application in environmental remediation by dye degradation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Scheme 2
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

NSA:

Naphthalenesulfonic acid

APS:

Ammonium persulphate

CB:

Conduction band

CPs:

Conducting polymers

CSA:

Camphorsulfonic acid

HOMO:

Highest occupied molecular orbital

HRP:

Horseradish peroxidase

LUMO:

Lowest unoccupied molecular orbital

MB:

Methylene blue

MeO:

Methyl orange

MG:

Malachite green

NPs:

Nanoparticles

PANI:

Polyaniline

PET:

Poly(ethyleneterephthalate)

PPy:

Polypyrrole

PTh:

Polythiophene

RB:

Rhodamine B

RR45:

Reactive red 45

SPS:

Sulfonated polystyrene

THF:

Tetrahydrofuran

UV:

Ultraviolet

VB:

Valance band

References

  1. Li X, Wang D, Cheng G et al (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B 81:267–273

    CAS  Google Scholar 

  2. Wu J-M, Zhang T-W (2004) Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure. J Photochem Photobiol, A 162:171–177

    CAS  Google Scholar 

  3. Dodd A, McKinley A, Saunders M, Tsuzuki T (2006) Mechanochemical synthesis of nanocrystalline SnO2–ZnO photocatalysts. Nanotechnology 17:692

    CAS  Google Scholar 

  4. Bansal P, Bhullar N, Sud D (2009) Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst. Desalin Water Treat 12:108–113

    CAS  Google Scholar 

  5. Chen CC, Lu CS, Chung YC, Jan JL (2007) UV light induced photodegradation of malachite green on TiO2 nanoparticles. J Hazard Mater 141:520–528

    CAS  PubMed  Google Scholar 

  6. Kominami H, Kumamoto H, Kera Y, Ohtani B (2003) Photocatalytic decolorization and mineralization of malachite green in an aqueous suspension of titanium (IV) oxide nano-particles under aerated conditions: correlation between some physical properties and their photocatalytic activity. J Photochem Photobiol, A 160:99–104

    CAS  Google Scholar 

  7. Karunakaran C, Senthilvelan S (2005) Photocatalysis with ZrO2: oxidation of aniline. J Mol Catal A: Chem 233:1–8

    CAS  Google Scholar 

  8. Kakuta S, Abe T (2009) Photocatalysis for water oxidation by Fe2O3 nanoparticles embedded in clay compound: correlation between its polymorphs and their photocatalytic activities. J Mater Sci 44:2890–2898

    CAS  Google Scholar 

  9. Pawar RC, Khare V, Lee CS (2014) Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (gC3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans 43:12514–12527

    CAS  PubMed  Google Scholar 

  10. Gurr J-R, Wang ASS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    CAS  PubMed  Google Scholar 

  11. Xing Z, Zhang J, Cui J et al (2018) Recent advances in floating TiO2-based photocatalysts for environmental application. Appl Catal B 225:452–467

    CAS  Google Scholar 

  12. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    CAS  Google Scholar 

  13. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  PubMed  Google Scholar 

  14. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol, C 6:186–205

    CAS  Google Scholar 

  15. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14

    CAS  Google Scholar 

  16. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241

    CAS  PubMed  Google Scholar 

  17. Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2013) Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J Nanopart Res 15:1669

    Google Scholar 

  18. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    CAS  PubMed  Google Scholar 

  19. Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455

    CAS  Google Scholar 

  20. Su C, Hong B-Y, Tseng C-M (2004) Sol–gel preparation and photocatalysis of titanium dioxide. Catal Today 96:119–126

    CAS  Google Scholar 

  21. Yan M, Chen F, Zhang J, Anpo M (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B 109:8673–8678

    CAS  PubMed  Google Scholar 

  22. Lin H, Huang CP, Li W et al (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B 68:1–11

    CAS  Google Scholar 

  23. Pekakis PA, Xekoukoulotakis NP, Mantzavinos D (2006) Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res 40:1276–1286

    CAS  PubMed  Google Scholar 

  24. Marin ML, Santos-Juanes L, Arques A et al (2011) Organic photocatalysts for the oxidation of pollutants and model compounds. Chem Rev 112:1710–1750

    PubMed  Google Scholar 

  25. Meng Z-D, Zhu L, Choi J-G et al (2011) Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light. J Mater Chem 21:7596–7603

    CAS  Google Scholar 

  26. Rodríguez AL, Gallardo PS, Rivera MÁH et al (2012) Photocatalytic degradation of methylene blue dye in aqueous solutions by photocatalytic oxidation SiO2–TiO2. Adv Sci Lett 13:841–843

    Google Scholar 

  27. Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532

    CAS  Google Scholar 

  28. Dresselhaus M, Dresselhaus G, Cronin SB, Souza Filho AG (2018) Absorption of light in solids. In: Solid state properties. Springer, Berlin, pp 365–389

  29. Qamar A, Amin MR, Grynko O et al (2019) A probe of valence and conduction band electronic structure of lead oxide films for photodetectors. ChemPhysChem 20:3328–3335. https://doi.org/10.1002/cphc.201900726

    Article  CAS  PubMed  Google Scholar 

  30. Tsai C-Y (2019) The effects of intraband and interband carrier-carrier scattering on hot-carrier solar cells: a theoretical study of spectral hole burning, electron-hole energy transfer, Auger recombination, and impact ionization generation. Prog Photovoltaics Res Appl 27:433–452. https://doi.org/10.1002/pip.3116

    Article  CAS  Google Scholar 

  31. Bayer M, Stern O, Hawrylak P et al (2000) Hidden symmetries in the energy levels of excitonic ‘artificial atoms’. Nature 405:923–926. https://doi.org/10.1038/35016020

    Article  CAS  PubMed  Google Scholar 

  32. Patsoura A, Kondarides DI, Verykios XE (2006) Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Appl Catal B 64:171–179. https://doi.org/10.1016/j.apcatb.2005.11.015

    Article  CAS  Google Scholar 

  33. Zangeneh H, Zinatizadeh AAL, Habibi M et al (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36. https://doi.org/10.1016/j.jiec.2014.10.043

    Article  CAS  Google Scholar 

  34. Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459. https://doi.org/10.1016/j.solener.2004.03.031

    Article  CAS  Google Scholar 

  35. Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B 99:448–460. https://doi.org/10.1016/j.apcatb.2010.05.011

    Article  CAS  Google Scholar 

  36. Li Y, Wang W, Qiu X et al (2011) Comparing Cr, and N only doping with (Cr, N)-codoping for enhancing visible light reactivity of TiO2. Appl Catal B 110:148–153. https://doi.org/10.1016/j.apcatb.2011.08.037

    Article  CAS  Google Scholar 

  37. Wang H, Zhang L, Chen Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244. https://doi.org/10.1039/C4CS00126E

    Article  CAS  PubMed  Google Scholar 

  38. Bingham S, Daoud WA (2011) Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J Mater Chem 21:2041–2050. https://doi.org/10.1039/C0JM02271C

    Article  CAS  Google Scholar 

  39. Jadoun S, Sharma V, Ashraf SM, Riaz U (2017) Sonolytic doping of poly(1-naphthylamine) with luminol: influence on spectral, morphological and fluorescent characteristics. Colloid Polym Sci. https://doi.org/10.1007/s00396-017-4055-3

    Article  Google Scholar 

  40. Riaz U, Ashraf SM, Kumar Saroj S et al (2016) Microwave-assisted solid state intercalation of Rhodamine B and polycarbazole in bentonite clay interlayer space: structural characterization and photophysics of double intercalation. RSC Adv. https://doi.org/10.1039/c5ra27387k

    Article  Google Scholar 

  41. Riaz U, Jadoun S, Kumar P et al (2017) Influence of luminol doping of poly(o-phenylenediamine) on the spectral, morphological, and fluorescent properties: a potential fluorescent marker for early detection and diagnosis of Leishmania donovani. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b10325

    Article  PubMed  Google Scholar 

  42. Jadoun S, Ashraf SM, Riaz U (2018) Microwave-assisted synthesis of copolymers of luminol with anisidine: effect on spectral, thermal and fluorescence characteristics. Polym Adv Technol 29:1007–1017

    CAS  Google Scholar 

  43. Riaz U, Jadoun S, Kumar P et al (2018) Microwave-assisted facile synthesis of poly (luminol-co-phenylenediamine) copolymers and their potential application in biomedical imaging. RSC Adv 8:37165–37175

    CAS  Google Scholar 

  44. Riaz U, Ashraf SM, Jadoun S et al (2019) Spectroscopic and biophysical interaction studies of water-soluble dye modified poly (o-phenylenediamine) for its potential application in BSA detection and bioimaging. Sci Rep 9:8544

    PubMed  PubMed Central  Google Scholar 

  45. Jadoun S, Riaz U (2019) A review on the chemical and electrochemical copolymerization of conducting monomers: recent advancements and future prospects. Polym-Plast Technol Mater 1–21

  46. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51:1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  47. Riaz U, Ashraf SM, Aleem S et al (2016) Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. New J Chem. https://doi.org/10.1039/c5nj02513c

    Article  Google Scholar 

  48. Jadoun S, Riaz U (2020) Conjugated polymer light-emitting diodes. Polym Light-Emit Dev Displays. https://doi.org/10.1002/9781119654643.ch4

    Article  Google Scholar 

  49. Jadoun S, Riaz U (2020) A review on the chemical and electrochemical copolymerization of conducting monomers: recent advancements and future prospects. Polym-Plast Technol Mater 59:484–504. https://doi.org/10.1080/25740881.2019.1669647

    Article  CAS  Google Scholar 

  50. Kumari Jangid N, Jadoun S, Kaur N (2020) A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur Polym J 125:109485. https://doi.org/10.1016/j.eurpolymj.2020.109485

    Article  CAS  Google Scholar 

  51. Riaz U, Ashraf SM (2015) Microwave-induced catalytic degradation of a textile dye using bentonite–poly(o-toluidine) nanohybrid. RSC Adv 5:3276–3285. https://doi.org/10.1039/C4RA08054H

    Article  CAS  Google Scholar 

  52. Le T-H, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers. https://doi.org/10.3390/polym9040150

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jadoun S, Verma A, Ashraf SM, Riaz U (2017) A short review on the synthesis, characterization, and application studies of poly(1-naphthylamine): a seldom explored polyaniline derivative. Colloid Polym Sci. https://doi.org/10.1007/s00396-017-4129-2

    Article  Google Scholar 

  54. Jadoun S, Biswal L, Riaz U (2018) Tuning the optical properties of poly(o-phenylenediamine-co-pyrrole) via template mediated copolymerization. Des Monomers Polym 21:75–81. https://doi.org/10.1080/15685551.2018.1459078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jadoun S, Ashraf SM, Riaz U (2017) Tuning the spectral, thermal and fluorescent properties of conjugated polymers: via random copolymerization of hole transporting monomers. RSC Adv 7:32757–32768. https://doi.org/10.1039/c7ra04662f

    Article  CAS  Google Scholar 

  56. Jadoun S, Verma A, Riaz U (2018) Luminol modified polycarbazole and poly (o-anisidine): Theoretical insights compared with experimental data. Spectrochim Acta Part A: Mol Biomol Spectrosc

  57. Riaz U, Ashraf SM, Fatima T, Jadoun S (2017) Spectrochimica Acta Part A: molecular and biomolecular spectroscopy tuning the spectral, morphological and photophysical properties of sonochemically synthesized poly (carbazole) using acid Orange, fl uorescein and rhodamine 6G. SAA 173:986–993. https://doi.org/10.1016/j.saa.2016.11.003

    Article  CAS  Google Scholar 

  58. Riaz U, Ahmad S, Ashraf SM (2008) Pseudo template synthesis of poly (1-naphthylamine): effect of environment on nanostructured morphology. J Nanopart Res 10:1209–1214. https://doi.org/10.1007/s11051-007-9356-x

    Article  CAS  Google Scholar 

  59. Awuzie CI (2017) Conducting polymers. Mater Today: Proc 4:5721–5726. https://doi.org/10.1016/j.matpr.2017.06.036

    Article  Google Scholar 

  60. Riaz U, Ahmad S, Ashraf SM (2009) Effect of solvent on the characteristics of nanostructured composites of poly (1-naphthylamine) with poly (vinyl alcohol). Curr Appl Phys 9:581–587. https://doi.org/10.1016/j.cap.2008.05.012

    Article  Google Scholar 

  61. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Chemiresistive polyaniline-based gas sensors: a mini review. Sens Actuators B: Chem 220:534–548. https://doi.org/10.1016/j.snb.2015.05.107

    Article  CAS  Google Scholar 

  62. Ansari AA, Khan MAM, Khan MN et al (2011) Optical and electrical properties of electrochemically deposited polyaniline/CeO2 hybrid nanocomposite film. J Semicond 32:43001. https://doi.org/10.1088/1674-4926/32/4/043001

    Article  CAS  Google Scholar 

  63. Shimano JY, MacDiarmid AG (2001) Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity? Synth Met 123:251–262. https://doi.org/10.1016/S0379-6779(01)00293-4

    Article  CAS  Google Scholar 

  64. Saravanan R, Sacari E, Gracia F et al (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074

    Article  CAS  Google Scholar 

  65. Wang L, Feng X, Ren L et al (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923. https://doi.org/10.1021/jacs.5b01613

    Article  CAS  PubMed  Google Scholar 

  66. Liu P, Huang Y, Yan J, Zhao Y (2016) Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C 4:6362–6370. https://doi.org/10.1039/C6TC01718E

    Article  CAS  Google Scholar 

  67. Kashyap G, Ameta G, Ameta C et al (2019) Synthesis and characterization of polyaniline-drug conjugates as effective antituberculosis agents. Bioorg Med Chem Lett 29:1363–1369. https://doi.org/10.1016/j.bmcl.2019.03.040

    Article  CAS  PubMed  Google Scholar 

  68. Jangid NK, Chauhan NPS, Punjabi PB (2015) Preparation and characterization of polyanilines bearing rhodamine 6-G and Azure B as pendant groups. J Macromol Sci Part A 52:95–104. https://doi.org/10.1080/10601325.2015.980714

    Article  CAS  Google Scholar 

  69. Israr H, Rasool N, Rizwan K et al (2019) Synthesis and reactivities of triphenyl acetamide analogs for potential nonlinear optical material uses. Symmetry. https://doi.org/10.3390/sym11050622

    Article  Google Scholar 

  70. Jangid NK, Chauhan NPS, Punjabi PB (2014) Novel dye-substituted polyanilines: conducting and antimicrobial properties. Polym Bull 71:2611–2630. https://doi.org/10.1007/s00289-014-1210-6

    Article  CAS  Google Scholar 

  71. Jangid NK, Chauhan NPS, Ameta C et al (2014) Synthesis and characterization of functionalized polyaniline having methyl violet as pendant groups. J Macromol Sci Part A 51:625–632. https://doi.org/10.1080/10601325.2014.924835

    Article  CAS  Google Scholar 

  72. Chauhan NPS, Jangid NK, Punjabi PB (2013) Synthesis and characterization of conducting polyanilines via catalytic oxidative polymerization. Int J Polym Mater Polym Biomater 62:550–555. https://doi.org/10.1080/00914037.2012.761625

    Article  CAS  Google Scholar 

  73. Tai H, Jiang Y, Xie G et al (2008) Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens Actuators B: Chem 129:319–326

    CAS  Google Scholar 

  74. Liu C, Tai H, Zhang P et al (2017) Enhanced ammonia-sensing properties of PANI–TiO2–Au ternary self-assembly nanocomposite thin film at room temperature. Sens Actuators B: Chem 246:85–95

    CAS  Google Scholar 

  75. Yang C, Dong W, Cui G et al (2017) Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochim Acta 247:486–495

    CAS  Google Scholar 

  76. Yu J, Pang Z, Zheng C et al (2019) Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Appl Surf Sci 470:84–90

    CAS  Google Scholar 

  77. Bian C, Yu Y, Xue G (2007) Synthesis of conducting polyaniline/TiO2 composite nanofibres by one-step in situ polymerization method. J Appl Polym Sci 104:21–26

    CAS  Google Scholar 

  78. Zhang L, Liu P, Su Z (2006) Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stab 91:2213–2219. https://doi.org/10.1016/j.polymdegradstab.2006.01.002

    Article  CAS  Google Scholar 

  79. Sui X, Chu Y, Xing S, Liu C (2004) Synthesis of PANI/AgCl, PANI/BaSO4 and PANI/TiO2 nanocomposites in CTAB/hexanol/water reverse micelle. Mater Lett 58:1255–1259. https://doi.org/10.1016/j.matlet.2003.09.035

    Article  CAS  Google Scholar 

  80. Tai H, Jiang Y, Xie G, Yu J (2010) Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J Mater Sci Technol 26:605–613. https://doi.org/10.1016/S1005-0302(10)60093-X

    Article  CAS  Google Scholar 

  81. Ansari MO, Mohammad F (2011) Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens Actuators B: Chem 157:122–129. https://doi.org/10.1016/j.snb.2011.03.036

    Article  CAS  Google Scholar 

  82. Su B, Min S, She S et al (2007) Synthesis and characterization of conductive polyaniline/TiO2 composite nanofibers. Front Chem China 2:123–126. https://doi.org/10.1007/s11458-007-0025-5

    Article  Google Scholar 

  83. Zhang L, Wan M, Wei Y (2005) Polyaniline/TiO2 microspheres prepared by a template-free method. Synth Met 151:1–5. https://doi.org/10.1016/j.synthmet.2004.12.021

    Article  CAS  Google Scholar 

  84. Cheng Y, An L, Zhao Z, Wang G (2014) Preparation of polyaniline/TiO2 composite nanotubes for photodegradation of AZO dyes. J Wuhan Univ Technol-Mater Sci Ed 29:468–472. https://doi.org/10.1007/s11595-014-0941-4

    Article  CAS  Google Scholar 

  85. Jumat NA, Wai PS, Ching JJ, Basirun WJ (2017) Synthesis of polyaniline-TiO2 nanocomposites and their application in photocatalytic degradation. Polym Polym Compos 25:507–514

    CAS  Google Scholar 

  86. Zhang L, Wan M (2003) Polyaniline/TiO2 composite nanotubes. J Phys Chem B 107:6748–6753

    CAS  Google Scholar 

  87. Sui X, Chu Y, Xing S et al (2004) Self-organization of spherical PANI/TiO2 nanocomposites in reverse micelles. Colloids Surf A 251:103–107

    CAS  Google Scholar 

  88. Xiong S, Wang Q, Xia H (2004) Template synthesis of polyaniline/TiO2 bilayer microtubes. Synth Met 146:37–42

    CAS  Google Scholar 

  89. Nabid MR, Golbabaee M, Moghaddam AB et al (2008) Polyaniline/TiO2 nanocomposite: enzymatic synthesis and electrochemical properties. Int J Electrochem Sci 3:1117–1126

    CAS  Google Scholar 

  90. Nabid MR, Sedghi R, Moghaddam AB et al (2009) Synthesis of polyaniline/TiO2 nanocomposites with metalloporphyrin and metallophthalocyanine catalysts. J Porphyrins Phthalocyanines 13:980–985

    CAS  Google Scholar 

  91. Katoch A, Burkhart M, Hwang T, Kim SS (2012) Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol–gel chemical method. Chem Eng J 192:262–268. https://doi.org/10.1016/j.cej.2012.04.004

    Article  CAS  Google Scholar 

  92. Pawar SG, Patil SL, Chougule MA et al (2010) Synthesis and characterization of polyaniline:TiO2 nanocomposites. Int J Polym Mater Polym Biomater 59:777–785. https://doi.org/10.1080/00914037.2010.483217

    Article  CAS  Google Scholar 

  93. Chen F, An W, Li Y et al (2018) Fabricating 3D porous PANI/TiO2–graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA. Appl Surf Sci 427:123–132. https://doi.org/10.1016/j.apsusc.2017.08.146

    Article  CAS  Google Scholar 

  94. Gu L, Wang J, Qi R et al (2012) A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J Mol Catal A: Chem 357:19–25. https://doi.org/10.1016/j.molcata.2012.01.012

    Article  CAS  Google Scholar 

  95. Ma Y, Zhang C, Hou C et al (2017) Cetyl trimethyl ammonium bromide (CTAB) micellar templates directed synthesis of water-dispersible polyaniline rhombic plates with excellent processability and flow-induced color variation. Polymer 117:30–36. https://doi.org/10.1016/j.polymer.2017.04.010

    Article  CAS  Google Scholar 

  96. Kumar R, Yadav BC (2016) Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method. Mater Lett 167:300–302

    CAS  Google Scholar 

  97. Hashemi Monfared A, Jamshidi M (2019) Synthesis of polyaniline/titanium dioxide nanocomposite (PAni/TiO2) and its application as photocatalyst in acrylic pseudo paint for benzene removal under UV/VIS lights. Prog Org Coat 136:105257. https://doi.org/10.1016/j.porgcoat.2019.105257

    Article  CAS  Google Scholar 

  98. Zhu C, Cheng X, Dong X (2018) Enhanced Sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature. Front Chem 6:493

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gawri I, Ridhi R, Singh KP, Tripathi SK (2018) Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications. Mater Res Express 5:25303. https://doi.org/10.1088/2053-1591/aaa9f1

    Article  CAS  Google Scholar 

  100. Gawri I, Ridhi R, Singh KP, Tripathi SK (2018) Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications. Mater Rese Express 5:25303

    Google Scholar 

  101. Wang F, Min SX (2007) TiO2/polyaniline composites: an efficient photocatalyst for the degradation of methylene blue under natural light. Chin Chem Lett 18:1273–1277. https://doi.org/10.1016/j.cclet.2007.08.010

    Article  CAS  Google Scholar 

  102. Wang N, Chen J, Wang J et al (2019) Removal of methylene blue by polyaniline/TiO2 hydrate: adsorption kinetic, isotherm and mechanism studies. Powder Technol 347:93–102. https://doi.org/10.1016/j.powtec.2019.02.049

    Article  CAS  Google Scholar 

  103. Wang F, Min S, Han Y, Feng L (2010) Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts. Superlattices Microstruct 48:170–180. https://doi.org/10.1016/j.spmi.2010.06.009

    Article  CAS  Google Scholar 

  104. Salem MA, Al-Ghonemiy AF, Zaki AB (2009) Photocatalytic degradation of Allura red and Quinoline yellow with polyaniline/TiO2 nanocomposite. Appl Catal B 91:59–66. https://doi.org/10.1016/j.apcatb.2009.05.027

    Article  CAS  Google Scholar 

  105. Olad ALI, Behboudi S, Entezami ALIA (2012) Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite. Bull Mater Sci 35:801–809. https://doi.org/10.1007/s12034-012-0358-7

    Article  CAS  Google Scholar 

  106. Navas Díaz A, González García JA, Lovillo J (1997) Enhancer effect of fluorescein on the luminol-H2O2-horseradish peroxidase chemiluminescence: energy transfer process. J Biolumin Chemilumin 12:199–205. https://doi.org/10.1002/(SICI)1099-1271(199707/08)12:4%3c199:AID-BIO445%3e3.0.CO;2-U

    Article  PubMed  Google Scholar 

  107. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    CAS  PubMed  Google Scholar 

  108. Jain R, Mathur M, Sikarwar S, Mittal A (2007) Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J Environ Manag 85:956–964

    CAS  Google Scholar 

  109. Deng F, Min L, Luo X et al (2013) Visible-light photocatalytic degradation performances and thermal stability due to the synergetic effect of TiO2 with conductive copolymers of polyaniline and polypyrrole. Nanoscale 5:8703–8710

    CAS  PubMed  Google Scholar 

  110. Elsayed MA, Gobara M (2016) Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles. Mater Res Express 3:85301

    Google Scholar 

  111. Prastomo N, Ayad M, Kawamura G, Matsuda A (2011) Synthesis and characterization of polyaniline nanofiber/TiO2 nanoparticles hybrids. J Ceram Soc Jpn 119:342–345

    CAS  Google Scholar 

  112. Song X, Qin J, Li T, et al (2019) Efficient construction and enriched selective adsorption-photocatalytic activity of PVA/PANI/TiO2 recyclable hydrogel by electron beam radiation. J Appl Polym Sci

  113. Koysuren O, Koysuren HN (2019) Photocatalytic activity of polyaniline/Fe-doped TiO2 composites by in situ polymerization method. J Macromol Sci Part A 56:267–276

    CAS  Google Scholar 

  114. Yu Q, Wang M, Chen H, Dai Z (2011) Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: preparation and their photocatalytic properties. Mater Chem Phys 129:666–672. https://doi.org/10.1016/j.matchemphys.2011.05.012

    Article  CAS  Google Scholar 

  115. Ahmad R, Mondal PK (2012) Adsorption and photodegradation of methylene blue by using PAni/TiO2 nanocomposite. J Dispersion Sci Technol 33:380–386

    CAS  Google Scholar 

  116. Radoičić M, Šaponjić Z, Janković IA et al (2013) Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl Catal B 136–137:133–139. https://doi.org/10.1016/j.apcatb.2013.01.007

    Article  CAS  Google Scholar 

  117. Li Y, Yu Y, Wu L, Zhi J (2013) Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach. Appl Surf Sci 273:135–143. https://doi.org/10.1016/j.apsusc.2013.01.213

    Article  CAS  Google Scholar 

  118. Zhu Y, Xu S, Jiang L et al (2008) Synthesis and characterization of polythiophene/titanium dioxide composites. React Funct Polym 68:1492–1498. https://doi.org/10.1016/j.reactfunctpolym.2008.07.008

    Article  CAS  Google Scholar 

  119. Zhang T, ki Oyama T, Horikoshi S et al (2002) Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Solar Energy Mater Solar Cells 73:287–303. https://doi.org/10.1016/S0927-0248(01)00215-X

    Article  CAS  Google Scholar 

  120. Yuan L, Yu Z, Li C et al (2014) PANI-sensitized N-TiO2 inverse opals with enhanced photoelectrochemical performance and photocatalytic activity. J Electrochem Soc 161:H332–H336

    CAS  Google Scholar 

  121. Jeong W-H, Amna T, Ha Y-M et al (2014) Novel PANI nanotube@TiO2 composite as efficient chemical and biological disinfectant. Chem Eng J 246:204–210. https://doi.org/10.1016/j.cej.2014.02.054

    Article  CAS  Google Scholar 

  122. Subramanian E, Subbulakshmi S, Murugan C (2014) Inter-relationship between nanostructures of conducting polyaniline and the photocatalytic methylene blue dye degradation efficiencies of its hybrid composites with anatase TiO2. Mater Res Bull 51:128–135. https://doi.org/10.1016/j.materresbull.2013.12.006

    Article  CAS  Google Scholar 

  123. Lin Y, Li D, Hu J et al (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764–5772. https://doi.org/10.1021/jp211222w

    Article  CAS  Google Scholar 

  124. Liu Z, Miao Y-E, Liu M et al (2014) Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. J Colloid Interface Sci 424:49–55. https://doi.org/10.1016/j.jcis.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  125. Leng C, Wei J, Liu Z et al (2013) Facile synthesis of PANI-modified CoFe2O4–TiO2 hierarchical flower-like nanoarchitectures with high photocatalytic activity. J Nanopart Res 15:1643. https://doi.org/10.1007/s11051-013-1643-0

    Article  CAS  Google Scholar 

  126. Zarrin S, Heshmatpour F (2018) Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. J Hazard Mater 351:147–159. https://doi.org/10.1016/j.jhazmat.2018.02.052

    Article  CAS  PubMed  Google Scholar 

  127. Jiménez M, Ignacio Maldonado M, Rodríguez EM et al (2015) Supported TiO2 solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. J Chem Technol Biotechnol 90:149–157. https://doi.org/10.1002/jctb.4299

    Article  CAS  Google Scholar 

  128. Ma J, Yang M, Sun Y et al (2014) Fabrication of Ag/TiO2 nanotube array with enhanced photo-catalytic degradation of aqueous organic pollutant. Physica E 58:24–29. https://doi.org/10.1016/j.physe.2013.11.006

    Article  CAS  Google Scholar 

  129. Liu Y, Zeng G, Tang L et al (2015) Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. J Colloid Interface Sci 448:451–459. https://doi.org/10.1016/j.jcis.2015.02.037

    Article  CAS  PubMed  Google Scholar 

  130. Cheng L, Zhang S, Wang Y et al (2016) Ternary P25–graphene–Fe3O4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes. Mater Res Bull 73:77–83. https://doi.org/10.1016/j.materresbull.2015.06.047

    Article  CAS  Google Scholar 

  131. Zhou Q, Zhong Y-H, Chen X et al (2014) Mesoporous anatase TiO2/reduced graphene oxide nanocomposites: a simple template-free synthesis and their high photocatalytic performance. Mater Res Bull 51:244–250. https://doi.org/10.1016/j.materresbull.2013.12.034

    Article  CAS  Google Scholar 

  132. Sarmah S, Kumar A (2011) Photocatalytic activity of polyaniline-TiO2 nanocomposites. Indian J Phys 85:713. https://doi.org/10.1007/s12648-011-0071-1

    Article  CAS  Google Scholar 

  133. Serpone N, Maruthamuthu P, Pichat P et al (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol, A 85:247–255. https://doi.org/10.1016/1010-6030(94)03906-B

    Article  CAS  Google Scholar 

  134. Moumeni O, Hamdaoui O, Pétrier C (2012) Sonochemical degradation of malachite green in water. Chem Eng Process 62:47–53. https://doi.org/10.1016/j.cep.2012.09.011

    Article  CAS  Google Scholar 

  135. Perera SD, Mariano RG, Vu K et al (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956. https://doi.org/10.1021/cs200621c

    Article  CAS  Google Scholar 

  136. Zhang H, Zong R, Zhao J, Zhu Y (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42:3803–3807

    CAS  PubMed  Google Scholar 

  137. Gilja V, Novaković K, Travas-Sejdic J et al (2017) Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of azo dye in wastewater. Nanomaterials. https://doi.org/10.3390/nano7120412

    Article  PubMed  PubMed Central  Google Scholar 

  138. Melinte V, Stroea L, Chibac-Scutaru LA (2019) Polymer nanocomposites for photocatalytic applications. Catalysts. https://doi.org/10.3390/catal9120986

    Article  Google Scholar 

  139. Lee LS, Chang C-J (2019) Recent developments about conductive polymer based composite photocatalysts. Polymers. https://doi.org/10.3390/polym11020206

    Article  PubMed  PubMed Central  Google Scholar 

  140. Umar M (2013) Photocatalytic degradation of organic pollutants in water. In: Rashed HAAE-MN (ed). IntechOpen, Rijeka, p Ch. 8

  141. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639. https://doi.org/10.1007/s11434-011-4476-1

    Article  CAS  Google Scholar 

  142. Song E, Choi J-W (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials. https://doi.org/10.3390/nano3030498

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gilja V, Novaković K, Travas-Sejdic J et al (2017) Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of azo dye in wastewater. NANO 7(12):412

    Google Scholar 

  144. Teli SB, Molina S, Sotto A et al (2013) Fouling resistant polysulfone–PANI/TiO2 ultrafiltration nanocomposite membranes. Ind Eng Chem Res 52:9470–9479. https://doi.org/10.1021/ie401037n

    Article  CAS  Google Scholar 

  145. Reddy KR, Karthik KV, Prasad SBB et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. https://doi.org/10.1016/j.poly.2016.08.029

    Article  CAS  Google Scholar 

  146. Ma J, Dai J, Duan Y et al (2020) Fabrication of PANI–TiO2/rGO hybrid composites for enhanced photocatalysis of pollutant removal and hydrogen production. Renew Energy 156:1008–1018. https://doi.org/10.1016/j.renene.2020.04.104

    Article  CAS  Google Scholar 

  147. Kanamarlapudi SLRK, Chintalpudi VK, Muddada S (2018) Application of biosorption for removal of heavy metals from wastewater. Biosorption 69

  148. Alireza K, Ali MG (2011) Nanostructured titanium dioxide materials: properties, preparation and applications. World Scientific, Singapore

    Google Scholar 

  149. Li X, Teng W, Zhao Q, Wang L (2011) Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays. J Nanopart Res 13:6813–6820

    CAS  Google Scholar 

  150. Mousli F, Chaouchi A, Hocine S et al (2019) Diazonium-modified TiO2/polyaniline core/shell nanoparticles. Structural characterization, interfacial aspects and photocatalytic performances. Appl Surf Sci 465:1078–1095

    CAS  Google Scholar 

  151. Eskizeybek V, Sarı F, Gülce H et al (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B 119–120:197–206. https://doi.org/10.1016/j.apcatb.2012.02.034

    Article  CAS  Google Scholar 

  152. Chowdhury D, Paul A, Chattopadhyay A (2005) Photocatalytic polypyrrole—TiO2—nanoparticles composite thin film generated at the air–water interface. Langmuir 21:4123–4128

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the American Chemical Society, Elsevier, Springer and Taylor & Francis for copyright permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapana Jadoun.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangid, N.K., Jadoun, S., Yadav, A. et al. Polyaniline-TiO2-based photocatalysts for dyes degradation. Polym. Bull. 78, 4743–4777 (2021). https://doi.org/10.1007/s00289-020-03318-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03318-w

Keywords

Navigation