Skip to main content
Log in

Investigation of chemical bonding and electronic network of rGO/PANI/PVA electrospun nanofiber

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Reduced graphene oxide-reinforced polyaniline and poly(vinyl alcohol) (PVA/PANI/rGO) nanofibers were synthesized by electrospinning method with different rGO content varying from 1 to 5wt%. The PVA/PANI/rGO nanofibers were characterized by SEM, FTIR, Raman, XPS and UV–visible spectroscopy to investigate the morphology, vibrational bonding, elemental composition and optical properties, respectively. The XRD results reveal the broad peak at 2θ = 25° corresponding to (002) for rGO and three peaks at 2θ = 14°, 20° and 25° corresponding to (011), (020) and (200), respectively for PANI. The FTIR signatures at 1088, 1245, 1359, 1411, 1717, 2930 and 3305 cm−1 correspond to ν-(C–O), ν-(N–H), ν-(C–OH), ν-(C=O), ν-(C–H) and ν-(O–H), respectively. The optical bandgap of PVA/PANI/rGO nanofibers was decreased from 4.20 to 4.07 eV as the rGO wt% increased. The structural and electronic network of carbon was analyzed by semiempirical Gaussian peaks to predict various binding energy of core orbital binding energy spectra in PVA/PANI/rGO nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. Farshad B, Abdulhakeem B, Mopeli F, Saleh K, DamilolaM FT, Julien D, Ncholu M (2015) Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning. J Phys Chem Solids 77:139–145

    Article  Google Scholar 

  2. Ghobadi S, Sadighikia S, Papila M, Cebeci FÇ, GürselS A (2015) Graphene-reinforced poly(vinyl alcohol) electrospun fibers as building blocks for high-performance nanocomposites. RSC Adv 5:85009–85018

    Article  CAS  Google Scholar 

  3. Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one-pot” preparation. Journal of Energy Storage 26:100947

    Article  Google Scholar 

  4. Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd EB, Nair JR, Angulakshmi N, Meligrana G, Bella F, Gerbaldi C, Stephan AM (2018) Metal-organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim Acta 285:355–364

    Article  CAS  Google Scholar 

  5. Scalia A, Bella F, Lamberti A, Gerbaldi C, Tresso E (2019) Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in-plane integration of energy conversion and storage devices. Energy 166:789–795

    Article  CAS  Google Scholar 

  6. NairJ R, Colò F, Kazzazi A, Moreno M, Bresser D, Lin R, Bella F, Meligrana G, Fantini S, Simonetti E, Appetecchi GB, Passerini S, Gerbaldi C (2019) Room-temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J Power Sources 412:398–407

    Article  Google Scholar 

  7. Piana G, Ricciardi M, Bella F, Cucciniello R, Proto A, Gerbaldi C (2020) Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem Eng J 382:122934

    Article  CAS  Google Scholar 

  8. ChenL QiuX, BaiZ FanLZ (2021) Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. Journal of Energy Chemistry 52:210–217

    Article  Google Scholar 

  9. Falco M, Castro L, NairJ R, Bella F, BardéF MeligranaG, GerbaldiC, (2019) UV-cross-linked composite polymer electrolyte for high-rate, Ambient temperature lithium batteries. ACS Appl Energy Mater 2:1600–1607

    Article  CAS  Google Scholar 

  10. Yuan C, Zhou Y, Zhu Y, Liang J, Wang S, Peng S, Li Y, Cheng S, Yang M, Hu J, Zhang B, Zeng R, He JLQ (2020) Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nature Commun 11:3919. https://doi.org/10.1038/s41467-020-17760-x

    Article  CAS  Google Scholar 

  11. Zhang Y, Rutledge GC (2012) Electrical conductivity of electrospun polyaniline and polyaniline-blend fibers and mats. Macromolecules 45(10):4238–4246. https://doi.org/10.1021/ma3005982

    Article  CAS  Google Scholar 

  12. Liu W, Zhong T, Liu T, Zhang J, Liu H (2020) Preparation and Characterization of Electrospun Conductive Janus Nanofibers with Polyaniline. ACS Applied Polymer Materials 2(7):2819–2829. https://doi.org/10.1021/acsapm.0c00364

    Article  CAS  Google Scholar 

  13. Ruiz J, Gonzalo B, Dios JR, LazaJM VilasJL, LeónLM, (2013) Improving the process-ability of conductive polymers: The case of polyaniline. Adv Polym Technol 32:180–188

    Article  Google Scholar 

  14. Sinha S, Nongthombam S, Devi NA, Rai S, Bhujel R, Singh WI,  Biswas A, Swain BP (2020) Conduction mechanism of polyaniline/reduced graphene oxide/Ag2O nanocomposite. IEEE. https://doi.org/10.1109/VLSIDCS47293.2020.9179888

    Article  Google Scholar 

  15. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    Article  CAS  Google Scholar 

  16. Fratoddia I, Vendittia I, Cametti C, RussoaMV, (2015) Chemiresistive polyaniline based gas sensors: A mini-review. Sens Actuators B220:534–548

    Article  Google Scholar 

  17. YangW RKR, RingerSP TP, GoodingJJ BraetF (2010) Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem Int Ed 49:2114–2138

    Article  Google Scholar 

  18. Moayeri A, Ajji A (2015) Fabrication of polyaniline/poly(ethylene oxide)/noncovalently functionalized graphene nanofibers via electrospinning. Synth Metals 200:7–15

    Article  CAS  Google Scholar 

  19. GeimAK NovoselovAK (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  20. Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077

    Article  CAS  Google Scholar 

  21. Chen Z, Jiang Y, Xin B, Jiang S, Liu Y, Lin L (2020) Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes. J Mater Sci: Mater Electro 31:5958–5965. https://doi.org/10.1007/s10854-020-03204-1

    Article  CAS  Google Scholar 

  22. Cossio JJB, Peña PA, Gordillo AH, García LFD, Santiago ARP, Echegoyen L, Reguera E (2020) In Situ Aniline-Polymerized Interfaces on GO−PVA nanoplatforms as bifunctional supercapacitors and pH-universal ORR electrodes. ACS Appl Energy Mater 3:4727–4737

    Article  Google Scholar 

  23. Rose A, Prasad KG, Sakthivel T, Gunasekaran V, Maiyalagan T, Vijayakumara T (2018) Electrochemical analysis of Graphene Oxide/Polyaniline/Polyvinyl alcohol composite nanofibers for supercapacitor applications. Appl Surf Sci 449:551–557

    Article  CAS  Google Scholar 

  24. Wu J, Zhang Q, Wang J, Huang X, Bai H (2018) A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors, Energy Environ. Sci 11:1280–1286. https://doi.org/10.1039/C8EE00078F

    Article  CAS  Google Scholar 

  25. GhobadiS MS, Bakhtiari R, Shamloo B, Sadhu V, Papila M, Fevzi Cebeci Ç, GürselS A (2016) PVA/PANI/rGO ternary electrospun mats as metal-free anti-bacterial substrates. RSC Adv 6:92434–92442

    Article  Google Scholar 

  26. Lin Y, Chen R, Zhang Y, Lin Z, Liu Q, Liu J, Wang Y, Gao L, Wang J (2020) Sandwich-like polyvinyl alcohol (PVA) grafted graphene: A solid-inhibitorscontainer for long term self-healing coatings. Chem Eng J 383:123203

    Article  CAS  Google Scholar 

  27. Afzali M, Mostafavi A, Shamspur T (2020) Square wave voltammetric determination of anticancer drug flutamide using carbon paste electrode modified by CuO/GO/PANI nanocomposite. Arabian J Chem. 13:3255–3265

    Article  CAS  Google Scholar 

  28. Rai S, Bhujel R, Biswas J, Swain BP (2019) Effect of electrolyte on the supercapacitive behaviour of copper oxide/reduced graphene oxide nanocomposite. Ceram Int 45(11):14136–14145

    Article  CAS  Google Scholar 

  29. Devi NA, Nongthombam S, Sinha S, Bhujel R, Rai S, Singh WI, Dasgupta P, Swain BP (2020) Investigation of chemical bonding and supercapacitivity properties of Fe3O4-rGO nanocomposites for supercapacitor applications. Diam Relat Mater 104:107756

    Article  CAS  Google Scholar 

  30. Nongthombam S, Devi NA, Sinha S, Bhujel R, Rai S, Ishwarchand W, Laha S, Swain BP (2020) Reduced graphene oxide/gallium nitride nanocomposites for supercapacitor applications. J Phys Chem Solid 141:109406

    Article  CAS  Google Scholar 

  31. Sinha S, Devi NA, Nongthombam S, Bhujel R, Rai S, Sarkar G, Swain BP (2020) Investigation of optical, electrical and electrochemical properties of polyaniline/rGO/Ag2O nanocomposite. Diam Relat Mater 107:107885

    Article  CAS  Google Scholar 

  32. Bhujel R, Rai S, Deka U, Swain BP (2019) Electrochemical, bonding network, and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications. J. AlloysCompd 792:250–259

    CAS  Google Scholar 

  33. Gounder JT, Kalim D, Chidambaram K, Basheer AM, Kishor SK, Deepalekshmi P, Muhammad F, Arunai NN, Pasha SKK (2017) Influence of CuO nanoparticles and graphene nanoplates on the sensing behavior of poly(vinyl alcohol) nanocomposites for the detection of ethanol and propanol vapors. J Mater Sci Mater 10854:8484

    Google Scholar 

  34. Hanan A, Abdellah A (2017) Preparation of Electrospun Nanocomposite Nan0fibers of polyaniline/Poly(methyl methacrylate) with Amino-Functionalized Graphene. Polymers 9:453

    Article  Google Scholar 

  35. Mianqi X, Fengwang L, Juan Z, Hang S, Meining Z, Tingbing C (2012) Structure-based enhanced capacitance: In situ growth of highly ordered polyaniline nanorods on reduced Graphene Oxide patterns. Adv Funct Mater 22:1284–1290

    Article  Google Scholar 

  36. Bhujel R, Swain BP (2019) Investigation of cyclic voltammetry and impedance spectroscopy of thermally exfoliated biomass synthesized nickel decorated graphene. J PhysChem Solid 130:242–249

    Article  CAS  Google Scholar 

  37. Swain BP (2006) The analysis of the carbon bonding environment in HWCVD deposited a-SiC: H films by XPS and Raman spectroscopy Surf. Coat Techn 201(3–4):1589–1593

    Article  CAS  Google Scholar 

  38. Ghadai RK, Das S, Kumar D, Mondal SC, Swain BP (2018) Correlation between structural and mechanical properties of silicon doped DLC thin films Diam. Relat Mater 82:25–32

    Article  CAS  Google Scholar 

  39. Ghadai RK, Kalita K, Mondal SC, Swain BP (2019) Genetically optimized diamond-like carbon thin film coatings. Mater Manuf Process 34(13):1476–1487

    Article  CAS  Google Scholar 

  40. Bhujel R, Rai S, Baruah K, Deka U, Biswas J, Swain BP (2019) Capacitive and sensing responses of biomass-derived silver decorated graphene. Scientific Rep 9(1):1–14

    Google Scholar 

  41. Swain BP, Hwang NM (2008) Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition. Appl Surf Sci 254:5319–5322

    Article  CAS  Google Scholar 

  42. AlarcónL E, Espinosa-PM E, Solis CDA, Gonzalo J, Solis J, Martinez-Orts M, Haro-Poniatowski E (2018) Flex Serv Manu J 124:141

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Loushambam Herojit Singh, Department of physics, NIT Manipur, for providing UV–visible characterization. We also thank the Department of chemistry, NIT Manipur, for FTIR and XRD characterization of the rGO/PANI/PVA nanofibers composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhu P. Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, W.I., Sinha, S., Devi, N.A. et al. Investigation of chemical bonding and electronic network of rGO/PANI/PVA electrospun nanofiber. Polym. Bull. 78, 6613–6629 (2021). https://doi.org/10.1007/s00289-020-03442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03442-7

Keywords

Navigation