Skip to main content
Log in

High-performance gas separation using mixed-matrix composite membranes containing graphene nanoplatelets

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Mixed-matrix composite membrane (MMCM) made from a dense selective layer filled with various filler on the top of a porous support layer is an effective method to obtain high gas separation performance compared to the conventional mixed-matrix membrane. In this study, the high CO2-selective Pebax-1657 layer was coated onto the porous PES support layer with desirable mechanical stability, and then graphene nanoplatelets (GNPs) were embedded into Pebax selective layer at different concentrations (below 1 wt%) to evaluate the influence of GNPs on the separation properties of gases such as CO2, O2, and N2 with distinct features under fixed pressure and temperature (4 bar and 25 °C). The prepared MMCMs were characterized by SEM, XRD and FTIR analysis. The single gas separation results showed that the permeability and selectivity of MMCMs were simultaneously increased by GNP loading. The MMCM containing 0.7 wt% GNP considerably improved the CO2 permeability, CO2/N2, and O2/N2 selectivities about 68%, 50%, and 28%, respectively, in comparison with the pure MMCM. This was attributed to the higher aspect ratio of GNPs, which can produce more interaction with Pebax and CO2 gas. Thus, fabrication of the GNP-embedded MMCMs is an effective strategy to improve the gas separation properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Han Y, Ho WSW (2018) Recent advances in polymeric membranes for CO2 capture. Chinese J Chem Eng 26:2238–2254. https://doi.org/10.1016/j.cjche.2018.07.010

    Article  CAS  Google Scholar 

  2. Ebadi A, Mashhadikhan S, Sanaeepur H (2019) Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO2 separation. Prog Mater Sci 102:222–295. https://doi.org/10.1016/j.pmatsci.2018.11.002

    Article  CAS  Google Scholar 

  3. Murali RS, Kumar KP, Ismail AF, Sridhar S (2014) Nanosilica and H-Mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous Mesoporous Mater 197:291–298. https://doi.org/10.1016/j.micromeso.2014.07.001

    Article  CAS  Google Scholar 

  4. Surya Murali R, Sridhar S, Sankarshana T, Ravikumar YVL (2010) Gas permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538. https://doi.org/10.1021/ie9016495

    Article  CAS  Google Scholar 

  5. Murali RS, Ismail AF, Rahman MA, Sridhar S (2014) Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep Purif Technol 129:1–8. https://doi.org/10.1016/j.seppur.2014.03.017

    Article  CAS  Google Scholar 

  6. Zhao D, Ren J, Li H et al (2014) Poly (amide-6-b-ethylene oxide)/ SAPO-34 mixed matrix membrane for CO2 separation. J Energy Chem 23:227–234. https://doi.org/10.1016/S2095-4956(14)60140-6

    Article  CAS  Google Scholar 

  7. Maleh MS, Raisi A (2019a) CO2-philic moderate selective layer mixed matrix membranes containing surface functionalized NaX towards highly-efficient CO2 capture. RSC Adv. https://doi.org/10.1039/c9ra01654f

    Article  Google Scholar 

  8. Li T, Pan Y, Peinemann K, Lai Z (2013) Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Memb Sci 425–426:235–242. https://doi.org/10.1016/j.memsci.2012.09.006

    Article  CAS  Google Scholar 

  9. Jomekian A, Bazooyar B, Mosayebi R, Mohammadi T (2017) Ionic liquid-modified Pebax ® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2. J Memb Sci 524:652–662. https://doi.org/10.1016/j.memsci.2016.11.065

    Article  CAS  Google Scholar 

  10. Sanchez-lainez J, Gracia-guillen I, Zornoza B et al (2019) Thin supported MOF based mixed matrix membranes of Pebax 1657 for biogas upgrade. New J Chem 43:312–319. https://doi.org/10.1039/c8nj04769c

    Article  CAS  Google Scholar 

  11. Sabetghadam A, Liu X, Benzaqui M et al (2018) Influence of filler pore structure and polymer on the performance of MOF-based mixed-matrix membranes for CO 2 capture. Chem - A Eur J 24:7949–7956. https://doi.org/10.1002/chem.201800253

    Article  CAS  Google Scholar 

  12. Mozafari M, Abedini R, Rahimpour A (2018) Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4. J Mater Chem A 8:12380–12392. https://doi.org/10.1039/C8TA04806A

    Article  Google Scholar 

  13. Isanejad M, Mohammadi T (2018) Effect of amine modification on morphology and performance of poly (ether-block-amide)/ fumed silica nanocomposite membranes for CO2/CH4 separation. Mater Chem Phys 205:303–314. https://doi.org/10.1016/j.matchemphys.2017.11.018

    Article  CAS  Google Scholar 

  14. Arabi A, Seidi F, Salehi E et al (2017) Efficient CO2-Removal using mixed-matrix membranes with modified TiO2 nanoparticles. J Mater Chem A 5:4011–4025. https://doi.org/10.1039/C6TA09990D

    Article  CAS  Google Scholar 

  15. Asghari M, Afsari M (2018) Effect of ethylene oxide functional groups in PEBA-CNT membranes on CO2/CH4 mixed gas separation. J Membr Sci Res 4:34–40. https://doi.org/10.22079/jmsr.2017.61016.1131

    Article  CAS  Google Scholar 

  16. Peng D, Wang S, Tian Z et al (2017) Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. J Memb Sci 522:351–362. https://doi.org/10.1016/j.memsci.2016.09.040

    Article  CAS  Google Scholar 

  17. Xiang L, Pan Y, Zeng G et al (2016) Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2separation. J Memb Sci 500:66–75. https://doi.org/10.1016/j.memsci.2015.11.017

    Article  CAS  Google Scholar 

  18. Duan K, Wang J, Zhang Y, Liu J (2019) Covalent organic frameworks (COFs ) functionalized mixed matrix membrane for effective CO2/N2 separation. J Memb Sci 572:588–595. https://doi.org/10.1016/j.memsci.2018.11.054

    Article  CAS  Google Scholar 

  19. Wang M, Wang Z, Zhao S et al (2017) Recent advances on mixed matrix membranes for CO2separation. Chinese J Chem Eng 25:1581–1597. https://doi.org/10.1016/j.cjche.2017.07.006

    Article  Google Scholar 

  20. Asghari M, Mosadegh M, Riasat H (2018) Supported PEBA-zeolite 13X nano-composite membranes for gas separation : preparation, characterization and molecular dynamics simulation. Chem Eng Sci 187:67–78. https://doi.org/10.1016/j.ces.2018.04.067

    Article  CAS  Google Scholar 

  21. Amini Z, Asghari M (2018) Preparation and characterization of ultra-thin poly ether block amide/nanoclay nanocomposite membrane for gas separation. Appl Clay Sci 166:230–241. https://doi.org/10.1016/j.clay.2018.09.025

    Article  CAS  Google Scholar 

  22. Berry V (2013) Impermeability of graphene and its applications. Carbon N Y 62:1–10. https://doi.org/10.1016/j.carbon.2013.05.052

    Article  CAS  Google Scholar 

  23. Yoo BM, Shin JE, Lee HD, Park HB (2017) Graphene and graphene oxide membranes for gas separation applications. Curr Opin Chem Eng 16:39–47. https://doi.org/10.1016/j.coche.2017.04.004

    Article  Google Scholar 

  24. Berean KJ, Ou JZ, Nour M et al (2015) Enhanced gas permeation through graphene nanocomposites. J Phys Chem C 119:13700–13712. https://doi.org/10.1021/acs.jpcc.5b02995

    Article  CAS  Google Scholar 

  25. Althumayri K, Harrison WJ, Shin Y et al (2015) The influence of few-layer graphene on the gas permeability of the high-free-volume polymer. Phil Transe R Soc A 374:20150031. https://doi.org/10.1098/rsta.2015.0031

    Article  CAS  Google Scholar 

  26. Pazani F, Aroujalian A (2020) Enhanced CO2-selective behavior of Pebax-1657: a comparative study between the influence of graphene-based fillers. Polym Test 81:106264. https://doi.org/10.1016/j.polymertesting.2019.106264

    Article  CAS  Google Scholar 

  27. Sadeghi I, Aroujalian A, Raisi A et al (2013) Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions. J Memb Sci 430:24–36. https://doi.org/10.1016/j.memsci.2012.11.051

    Article  CAS  Google Scholar 

  28. Khosravi T, Omidkhah M, Kaliaguine S, Rodrigue D (2017) Amine-functionalized CuBTC/Poly(Ether-b-Amide-6) (Pebax MH 1657) mixed matrix membranes for CO2/CH4 separation. Can J Chem Eng 95:2024–2033. https://doi.org/10.1002/cjce.22857

    Article  CAS  Google Scholar 

  29. Nigiz FU (2019) Synthesis and characterization of graphene nanoplate - incorporated PVA mixed matrix membrane. Polym Bull. https://doi.org/10.1007/s00289-019-02851-7

    Article  Google Scholar 

  30. Azizi N, Mohammadi T, Mosayebi R (2016) Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2, PEBAX-1074/AL2O3 nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 117:177–189. https://doi.org/10.1016/j.cherd.2016.10.018

    Article  CAS  Google Scholar 

  31. Peretz Damari S, Cullari L, Nadiv R et al (2018) Graphene-induced enhancement of water vapor barrier in polymer nanocomposites. Compos Part B Eng 134:218–224. https://doi.org/10.1016/j.compositesb.2017.09.056

    Article  CAS  Google Scholar 

  32. Zhao D, Ren J, Wang Y et al (2017) High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. J Memb Sci 521:104–113. https://doi.org/10.1016/j.memsci.2016.08.061

    Article  CAS  Google Scholar 

  33. Estahbanati EG, Omidkhah M, Amooghin AE (2017) Interfacial design of ternary mixed matrix membranes containing pebax 1657/Silver-Nanopowder/[BMIM][BF4] for improved CO2 separation performance. ACS Appl Mater Interfaces 9:10094–100105. https://doi.org/10.1021/acsami.6b16539

    Article  CAS  Google Scholar 

  34. Sanaeepur H, Ahmadi R, Ebadi A, Ghanbari D (2019) A novel ternary mixed matrix membrane containing glycerol-modified poly (ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation. J Memb Sci 573:234–246. https://doi.org/10.1016/j.memsci.2018.12.012

    Article  CAS  Google Scholar 

  35. Ţucureanu V, Matei A, Avram AM (2016) FTIR Spectroscopy for carbon family study FTIR spectroscopy for carbon family study. Crit Rev Anal Chem 46:502–520. https://doi.org/10.1080/10408347.2016.1157013

    Article  CAS  PubMed  Google Scholar 

  36. Azizi N, Isanejad M, Mohammadi T, Behbahani RM (2019) Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes. Front Chem Sci Eng. https://doi.org/10.1007/s11705-018-1781-0

    Article  Google Scholar 

  37. Xin Q, Li Z, Li C et al (2015) Enhancing the CO2 separation performance of amino acid-functionalized graphene oxide. J Mater Chem A 3:6629–6641. https://doi.org/10.1039/C5TA00506J

    Article  CAS  Google Scholar 

  38. Maleh MS, Raisi A (2019b) Comparison of porous and nonporous filler effect on performance of poly (ether-block-amide) mixed matrix membranes for gas separation applications. Chem Eng Res Des 147:545–560. https://doi.org/10.1016/j.cherd.2019.05.038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Aroujalian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazani, F., Aroujalian, A. High-performance gas separation using mixed-matrix composite membranes containing graphene nanoplatelets. Polym. Bull. 78, 6847–6866 (2021). https://doi.org/10.1007/s00289-020-03467-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03467-y

Keywords

Navigation